Mathematics
语言:中文
Language:English

current location:Derivative function > Derivative function calculation history > Answer
    There are 1 questions in this calculation: for each question, the 4 derivative of x is calculated.
    Note that variables are case sensitive.
\[ \begin{equation}\begin{split}[1/1]Find\ the\ 4th\ derivative\ of\ function\ arcsin(sqrt(1 - 4{x}^{2}))\ with\ respect\ to\ x:\\\end{split}\end{equation} \]\[ \begin{equation}\begin{split}\\Solution:&\\ &Primitive\ function\ = arcsin(sqrt(-4x^{2} + 1))\\&\color{blue}{The\ first\ derivative\ function:}\\&\frac{d\left( arcsin(sqrt(-4x^{2} + 1))\right)}{dx}\\=&(\frac{(\frac{(-4*2x + 0)*\frac{1}{2}}{(-4x^{2} + 1)^{\frac{1}{2}}})}{((1 - (sqrt(-4x^{2} + 1))^{2})^{\frac{1}{2}})})\\=&\frac{-4x}{(-sqrt(-4x^{2} + 1)^{2} + 1)^{\frac{1}{2}}(-4x^{2} + 1)^{\frac{1}{2}}}\\\\ &\color{blue}{The\ second\ derivative\ of\ function:} \\&\frac{d\left( \frac{-4x}{(-sqrt(-4x^{2} + 1)^{2} + 1)^{\frac{1}{2}}(-4x^{2} + 1)^{\frac{1}{2}}}\right)}{dx}\\=&\frac{-4(\frac{\frac{-1}{2}(\frac{-2(-4x^{2} + 1)^{\frac{1}{2}}(-4*2x + 0)*\frac{1}{2}}{(-4x^{2} + 1)^{\frac{1}{2}}} + 0)}{(-sqrt(-4x^{2} + 1)^{2} + 1)^{\frac{3}{2}}})x}{(-4x^{2} + 1)^{\frac{1}{2}}} - \frac{4(\frac{\frac{-1}{2}(-4*2x + 0)}{(-4x^{2} + 1)^{\frac{3}{2}}})x}{(-sqrt(-4x^{2} + 1)^{2} + 1)^{\frac{1}{2}}} - \frac{4}{(-sqrt(-4x^{2} + 1)^{2} + 1)^{\frac{1}{2}}(-4x^{2} + 1)^{\frac{1}{2}}}\\=&\frac{16x^{2}}{(-sqrt(-4x^{2} + 1)^{2} + 1)^{\frac{3}{2}}(-4x^{2} + 1)^{\frac{1}{2}}} - \frac{16x^{2}}{(-sqrt(-4x^{2} + 1)^{2} + 1)^{\frac{1}{2}}(-4x^{2} + 1)^{\frac{3}{2}}} - \frac{4}{(-sqrt(-4x^{2} + 1)^{2} + 1)^{\frac{1}{2}}(-4x^{2} + 1)^{\frac{1}{2}}}\\\\ &\color{blue}{The\ third\ derivative\ of\ function:} \\&\frac{d\left( \frac{16x^{2}}{(-sqrt(-4x^{2} + 1)^{2} + 1)^{\frac{3}{2}}(-4x^{2} + 1)^{\frac{1}{2}}} - \frac{16x^{2}}{(-sqrt(-4x^{2} + 1)^{2} + 1)^{\frac{1}{2}}(-4x^{2} + 1)^{\frac{3}{2}}} - \frac{4}{(-sqrt(-4x^{2} + 1)^{2} + 1)^{\frac{1}{2}}(-4x^{2} + 1)^{\frac{1}{2}}}\right)}{dx}\\=&\frac{16(\frac{\frac{-3}{2}(\frac{-2(-4x^{2} + 1)^{\frac{1}{2}}(-4*2x + 0)*\frac{1}{2}}{(-4x^{2} + 1)^{\frac{1}{2}}} + 0)}{(-sqrt(-4x^{2} + 1)^{2} + 1)^{\frac{5}{2}}})x^{2}}{(-4x^{2} + 1)^{\frac{1}{2}}} + \frac{16(\frac{\frac{-1}{2}(-4*2x + 0)}{(-4x^{2} + 1)^{\frac{3}{2}}})x^{2}}{(-sqrt(-4x^{2} + 1)^{2} + 1)^{\frac{3}{2}}} + \frac{16*2x}{(-sqrt(-4x^{2} + 1)^{2} + 1)^{\frac{3}{2}}(-4x^{2} + 1)^{\frac{1}{2}}} - \frac{16(\frac{\frac{-1}{2}(\frac{-2(-4x^{2} + 1)^{\frac{1}{2}}(-4*2x + 0)*\frac{1}{2}}{(-4x^{2} + 1)^{\frac{1}{2}}} + 0)}{(-sqrt(-4x^{2} + 1)^{2} + 1)^{\frac{3}{2}}})x^{2}}{(-4x^{2} + 1)^{\frac{3}{2}}} - \frac{16(\frac{\frac{-3}{2}(-4*2x + 0)}{(-4x^{2} + 1)^{\frac{5}{2}}})x^{2}}{(-sqrt(-4x^{2} + 1)^{2} + 1)^{\frac{1}{2}}} - \frac{16*2x}{(-sqrt(-4x^{2} + 1)^{2} + 1)^{\frac{1}{2}}(-4x^{2} + 1)^{\frac{3}{2}}} - \frac{4(\frac{\frac{-1}{2}(\frac{-2(-4x^{2} + 1)^{\frac{1}{2}}(-4*2x + 0)*\frac{1}{2}}{(-4x^{2} + 1)^{\frac{1}{2}}} + 0)}{(-sqrt(-4x^{2} + 1)^{2} + 1)^{\frac{3}{2}}})}{(-4x^{2} + 1)^{\frac{1}{2}}} - \frac{4(\frac{\frac{-1}{2}(-4*2x + 0)}{(-4x^{2} + 1)^{\frac{3}{2}}})}{(-sqrt(-4x^{2} + 1)^{2} + 1)^{\frac{1}{2}}}\\=&\frac{-192x^{3}}{(-sqrt(-4x^{2} + 1)^{2} + 1)^{\frac{5}{2}}(-4x^{2} + 1)^{\frac{1}{2}}} + \frac{128x^{3}}{(-sqrt(-4x^{2} + 1)^{2} + 1)^{\frac{3}{2}}(-4x^{2} + 1)^{\frac{3}{2}}} + \frac{32x}{(-4x^{2} + 1)^{\frac{1}{2}}(-sqrt(-4x^{2} + 1)^{2} + 1)^{\frac{3}{2}}} - \frac{192x^{3}}{(-sqrt(-4x^{2} + 1)^{2} + 1)^{\frac{1}{2}}(-4x^{2} + 1)^{\frac{5}{2}}} - \frac{32x}{(-4x^{2} + 1)^{\frac{3}{2}}(-sqrt(-4x^{2} + 1)^{2} + 1)^{\frac{1}{2}}} + \frac{16x}{(-sqrt(-4x^{2} + 1)^{2} + 1)^{\frac{3}{2}}(-4x^{2} + 1)^{\frac{1}{2}}} - \frac{16x}{(-sqrt(-4x^{2} + 1)^{2} + 1)^{\frac{1}{2}}(-4x^{2} + 1)^{\frac{3}{2}}}\\\\ &\color{blue}{The\ 4th\ derivative\ of\ function:} \\&\frac{d\left( \frac{-192x^{3}}{(-sqrt(-4x^{2} + 1)^{2} + 1)^{\frac{5}{2}}(-4x^{2} + 1)^{\frac{1}{2}}} + \frac{128x^{3}}{(-sqrt(-4x^{2} + 1)^{2} + 1)^{\frac{3}{2}}(-4x^{2} + 1)^{\frac{3}{2}}} + \frac{32x}{(-4x^{2} + 1)^{\frac{1}{2}}(-sqrt(-4x^{2} + 1)^{2} + 1)^{\frac{3}{2}}} - \frac{192x^{3}}{(-sqrt(-4x^{2} + 1)^{2} + 1)^{\frac{1}{2}}(-4x^{2} + 1)^{\frac{5}{2}}} - \frac{32x}{(-4x^{2} + 1)^{\frac{3}{2}}(-sqrt(-4x^{2} + 1)^{2} + 1)^{\frac{1}{2}}} + \frac{16x}{(-sqrt(-4x^{2} + 1)^{2} + 1)^{\frac{3}{2}}(-4x^{2} + 1)^{\frac{1}{2}}} - \frac{16x}{(-sqrt(-4x^{2} + 1)^{2} + 1)^{\frac{1}{2}}(-4x^{2} + 1)^{\frac{3}{2}}}\right)}{dx}\\=&\frac{-192(\frac{\frac{-5}{2}(\frac{-2(-4x^{2} + 1)^{\frac{1}{2}}(-4*2x + 0)*\frac{1}{2}}{(-4x^{2} + 1)^{\frac{1}{2}}} + 0)}{(-sqrt(-4x^{2} + 1)^{2} + 1)^{\frac{7}{2}}})x^{3}}{(-4x^{2} + 1)^{\frac{1}{2}}} - \frac{192(\frac{\frac{-1}{2}(-4*2x + 0)}{(-4x^{2} + 1)^{\frac{3}{2}}})x^{3}}{(-sqrt(-4x^{2} + 1)^{2} + 1)^{\frac{5}{2}}} - \frac{192*3x^{2}}{(-sqrt(-4x^{2} + 1)^{2} + 1)^{\frac{5}{2}}(-4x^{2} + 1)^{\frac{1}{2}}} + \frac{128(\frac{\frac{-3}{2}(\frac{-2(-4x^{2} + 1)^{\frac{1}{2}}(-4*2x + 0)*\frac{1}{2}}{(-4x^{2} + 1)^{\frac{1}{2}}} + 0)}{(-sqrt(-4x^{2} + 1)^{2} + 1)^{\frac{5}{2}}})x^{3}}{(-4x^{2} + 1)^{\frac{3}{2}}} + \frac{128(\frac{\frac{-3}{2}(-4*2x + 0)}{(-4x^{2} + 1)^{\frac{5}{2}}})x^{3}}{(-sqrt(-4x^{2} + 1)^{2} + 1)^{\frac{3}{2}}} + \frac{128*3x^{2}}{(-sqrt(-4x^{2} + 1)^{2} + 1)^{\frac{3}{2}}(-4x^{2} + 1)^{\frac{3}{2}}} + \frac{32(\frac{\frac{-1}{2}(-4*2x + 0)}{(-4x^{2} + 1)^{\frac{3}{2}}})x}{(-sqrt(-4x^{2} + 1)^{2} + 1)^{\frac{3}{2}}} + \frac{32(\frac{\frac{-3}{2}(\frac{-2(-4x^{2} + 1)^{\frac{1}{2}}(-4*2x + 0)*\frac{1}{2}}{(-4x^{2} + 1)^{\frac{1}{2}}} + 0)}{(-sqrt(-4x^{2} + 1)^{2} + 1)^{\frac{5}{2}}})x}{(-4x^{2} + 1)^{\frac{1}{2}}} + \frac{32}{(-4x^{2} + 1)^{\frac{1}{2}}(-sqrt(-4x^{2} + 1)^{2} + 1)^{\frac{3}{2}}} - \frac{192(\frac{\frac{-1}{2}(\frac{-2(-4x^{2} + 1)^{\frac{1}{2}}(-4*2x + 0)*\frac{1}{2}}{(-4x^{2} + 1)^{\frac{1}{2}}} + 0)}{(-sqrt(-4x^{2} + 1)^{2} + 1)^{\frac{3}{2}}})x^{3}}{(-4x^{2} + 1)^{\frac{5}{2}}} - \frac{192(\frac{\frac{-5}{2}(-4*2x + 0)}{(-4x^{2} + 1)^{\frac{7}{2}}})x^{3}}{(-sqrt(-4x^{2} + 1)^{2} + 1)^{\frac{1}{2}}} - \frac{192*3x^{2}}{(-sqrt(-4x^{2} + 1)^{2} + 1)^{\frac{1}{2}}(-4x^{2} + 1)^{\frac{5}{2}}} - \frac{32(\frac{\frac{-3}{2}(-4*2x + 0)}{(-4x^{2} + 1)^{\frac{5}{2}}})x}{(-sqrt(-4x^{2} + 1)^{2} + 1)^{\frac{1}{2}}} - \frac{32(\frac{\frac{-1}{2}(\frac{-2(-4x^{2} + 1)^{\frac{1}{2}}(-4*2x + 0)*\frac{1}{2}}{(-4x^{2} + 1)^{\frac{1}{2}}} + 0)}{(-sqrt(-4x^{2} + 1)^{2} + 1)^{\frac{3}{2}}})x}{(-4x^{2} + 1)^{\frac{3}{2}}} - \frac{32}{(-4x^{2} + 1)^{\frac{3}{2}}(-sqrt(-4x^{2} + 1)^{2} + 1)^{\frac{1}{2}}} + \frac{16(\frac{\frac{-3}{2}(\frac{-2(-4x^{2} + 1)^{\frac{1}{2}}(-4*2x + 0)*\frac{1}{2}}{(-4x^{2} + 1)^{\frac{1}{2}}} + 0)}{(-sqrt(-4x^{2} + 1)^{2} + 1)^{\frac{5}{2}}})x}{(-4x^{2} + 1)^{\frac{1}{2}}} + \frac{16(\frac{\frac{-1}{2}(-4*2x + 0)}{(-4x^{2} + 1)^{\frac{3}{2}}})x}{(-sqrt(-4x^{2} + 1)^{2} + 1)^{\frac{3}{2}}} + \frac{16}{(-sqrt(-4x^{2} + 1)^{2} + 1)^{\frac{3}{2}}(-4x^{2} + 1)^{\frac{1}{2}}} - \frac{16(\frac{\frac{-1}{2}(\frac{-2(-4x^{2} + 1)^{\frac{1}{2}}(-4*2x + 0)*\frac{1}{2}}{(-4x^{2} + 1)^{\frac{1}{2}}} + 0)}{(-sqrt(-4x^{2} + 1)^{2} + 1)^{\frac{3}{2}}})x}{(-4x^{2} + 1)^{\frac{3}{2}}} - \frac{16(\frac{\frac{-3}{2}(-4*2x + 0)}{(-4x^{2} + 1)^{\frac{5}{2}}})x}{(-sqrt(-4x^{2} + 1)^{2} + 1)^{\frac{1}{2}}} - \frac{16}{(-sqrt(-4x^{2} + 1)^{2} + 1)^{\frac{1}{2}}(-4x^{2} + 1)^{\frac{3}{2}}}\\=&\frac{3840x^{4}}{(-sqrt(-4x^{2} + 1)^{2} + 1)^{\frac{7}{2}}(-4x^{2} + 1)^{\frac{1}{2}}} - \frac{2304x^{4}}{(-sqrt(-4x^{2} + 1)^{2} + 1)^{\frac{5}{2}}(-4x^{2} + 1)^{\frac{3}{2}}} - \frac{576x^{2}}{(-4x^{2} + 1)^{\frac{1}{2}}(-sqrt(-4x^{2} + 1)^{2} + 1)^{\frac{5}{2}}} + \frac{2304x^{4}}{(-sqrt(-4x^{2} + 1)^{2} + 1)^{\frac{3}{2}}(-4x^{2} + 1)^{\frac{5}{2}}} + \frac{640x^{2}}{(-4x^{2} + 1)^{\frac{3}{2}}(-sqrt(-4x^{2} + 1)^{2} + 1)^{\frac{3}{2}}} - \frac{576x^{2}}{(-sqrt(-4x^{2} + 1)^{2} + 1)^{\frac{5}{2}}(-4x^{2} + 1)^{\frac{1}{2}}} - \frac{3840x^{4}}{(-sqrt(-4x^{2} + 1)^{2} + 1)^{\frac{1}{2}}(-4x^{2} + 1)^{\frac{7}{2}}} - \frac{960x^{2}}{(-4x^{2} + 1)^{\frac{5}{2}}(-sqrt(-4x^{2} + 1)^{2} + 1)^{\frac{1}{2}}} + \frac{128x^{2}}{(-sqrt(-4x^{2} + 1)^{2} + 1)^{\frac{3}{2}}(-4x^{2} + 1)^{\frac{3}{2}}} - \frac{192x^{2}}{(-sqrt(-4x^{2} + 1)^{2} + 1)^{\frac{1}{2}}(-4x^{2} + 1)^{\frac{5}{2}}} + \frac{32}{(-4x^{2} + 1)^{\frac{1}{2}}(-sqrt(-4x^{2} + 1)^{2} + 1)^{\frac{3}{2}}} + \frac{16}{(-sqrt(-4x^{2} + 1)^{2} + 1)^{\frac{3}{2}}(-4x^{2} + 1)^{\frac{1}{2}}} - \frac{32}{(-4x^{2} + 1)^{\frac{3}{2}}(-sqrt(-4x^{2} + 1)^{2} + 1)^{\frac{1}{2}}} - \frac{16}{(-sqrt(-4x^{2} + 1)^{2} + 1)^{\frac{1}{2}}(-4x^{2} + 1)^{\frac{3}{2}}}\\ \end{split}\end{equation} \]





Your problem has not been solved here? Please take a look at the  hot problems !


Return