Mathematics
语言:中文
Language:English

current location:Derivative function > Derivative function calculation history > Answer
    There are 1 questions in this calculation: for each question, the 4 derivative of x is calculated.
    Note that variables are case sensitive.
\[ \begin{equation}\begin{split}[1/1]Find\ the\ 4th\ derivative\ of\ function\ lg(lg(x)) + arcsin(x)\ with\ respect\ to\ x:\\\end{split}\end{equation} \]\[ \begin{equation}\begin{split}\\Solution:&\\ &\color{blue}{The\ first\ derivative\ function:}\\&\frac{d\left( lg(lg(x)) + arcsin(x)\right)}{dx}\\=&\frac{1}{ln{10}(lg(x))ln{10}(x)} + (\frac{(1)}{((1 - (x)^{2})^{\frac{1}{2}})})\\=&\frac{1}{xln^{2}{10}lg(x)} + \frac{1}{(-x^{2} + 1)^{\frac{1}{2}}}\\\\ &\color{blue}{The\ second\ derivative\ of\ function:} \\&\frac{d\left( \frac{1}{xln^{2}{10}lg(x)} + \frac{1}{(-x^{2} + 1)^{\frac{1}{2}}}\right)}{dx}\\=&\frac{-1}{x^{2}ln^{2}{10}lg(x)} + \frac{-2*0}{xln^{3}{10}lg(x)} + \frac{-1}{xln^{2}{10}lg^{2}(x)ln{10}(x)} + (\frac{\frac{-1}{2}(-2x + 0)}{(-x^{2} + 1)^{\frac{3}{2}}})\\=&\frac{-1}{x^{2}ln^{2}{10}lg(x)} - \frac{1}{x^{2}ln^{3}{10}lg^{2}(x)} + \frac{x}{(-x^{2} + 1)^{\frac{3}{2}}}\\\\ &\color{blue}{The\ third\ derivative\ of\ function:} \\&\frac{d\left( \frac{-1}{x^{2}ln^{2}{10}lg(x)} - \frac{1}{x^{2}ln^{3}{10}lg^{2}(x)} + \frac{x}{(-x^{2} + 1)^{\frac{3}{2}}}\right)}{dx}\\=&\frac{--2}{x^{3}ln^{2}{10}lg(x)} - \frac{-2*0}{x^{2}ln^{3}{10}lg(x)} - \frac{-1}{x^{2}ln^{2}{10}lg^{2}(x)ln{10}(x)} - \frac{-2}{x^{3}ln^{3}{10}lg^{2}(x)} - \frac{-3*0}{x^{2}ln^{4}{10}lg^{2}(x)} - \frac{-2}{x^{2}ln^{3}{10}lg^{3}(x)ln{10}(x)} + (\frac{\frac{-3}{2}(-2x + 0)}{(-x^{2} + 1)^{\frac{5}{2}}})x + \frac{1}{(-x^{2} + 1)^{\frac{3}{2}}}\\=&\frac{2}{x^{3}ln^{2}{10}lg(x)} + \frac{3}{x^{3}ln^{3}{10}lg^{2}(x)} + \frac{2}{x^{3}ln^{4}{10}lg^{3}(x)} + \frac{3x^{2}}{(-x^{2} + 1)^{\frac{5}{2}}} + \frac{1}{(-x^{2} + 1)^{\frac{3}{2}}}\\\\ &\color{blue}{The\ 4th\ derivative\ of\ function:} \\&\frac{d\left( \frac{2}{x^{3}ln^{2}{10}lg(x)} + \frac{3}{x^{3}ln^{3}{10}lg^{2}(x)} + \frac{2}{x^{3}ln^{4}{10}lg^{3}(x)} + \frac{3x^{2}}{(-x^{2} + 1)^{\frac{5}{2}}} + \frac{1}{(-x^{2} + 1)^{\frac{3}{2}}}\right)}{dx}\\=&\frac{2*-3}{x^{4}ln^{2}{10}lg(x)} + \frac{2*-2*0}{x^{3}ln^{3}{10}lg(x)} + \frac{2*-1}{x^{3}ln^{2}{10}lg^{2}(x)ln{10}(x)} + \frac{3*-3}{x^{4}ln^{3}{10}lg^{2}(x)} + \frac{3*-3*0}{x^{3}ln^{4}{10}lg^{2}(x)} + \frac{3*-2}{x^{3}ln^{3}{10}lg^{3}(x)ln{10}(x)} + \frac{2*-3}{x^{4}ln^{4}{10}lg^{3}(x)} + \frac{2*-4*0}{x^{3}ln^{5}{10}lg^{3}(x)} + \frac{2*-3}{x^{3}ln^{4}{10}lg^{4}(x)ln{10}(x)} + 3(\frac{\frac{-5}{2}(-2x + 0)}{(-x^{2} + 1)^{\frac{7}{2}}})x^{2} + \frac{3*2x}{(-x^{2} + 1)^{\frac{5}{2}}} + (\frac{\frac{-3}{2}(-2x + 0)}{(-x^{2} + 1)^{\frac{5}{2}}})\\=&\frac{-6}{x^{4}ln^{2}{10}lg(x)} - \frac{11}{x^{4}ln^{3}{10}lg^{2}(x)} - \frac{12}{x^{4}ln^{4}{10}lg^{3}(x)} - \frac{6}{x^{4}ln^{5}{10}lg^{4}(x)} + \frac{15x^{3}}{(-x^{2} + 1)^{\frac{7}{2}}} + \frac{9x}{(-x^{2} + 1)^{\frac{5}{2}}}\\ \end{split}\end{equation} \]





Your problem has not been solved here? Please take a look at the  hot problems !


Return