There are 1 questions in this calculation: for each question, the 4 derivative of x is calculated.
Note that variables are case sensitive.\[ \begin{equation}\begin{split}[1/1]Find\ the\ 4th\ derivative\ of\ function\ \frac{{x}^{4}arcsin(2)}{24}\ with\ respect\ to\ x:\\\end{split}\end{equation} \]
\[ \begin{equation}\begin{split}\\Solution:&\\ &Primitive\ function\ = \frac{1}{24}x^{4}arcsin(2)\\&\color{blue}{The\ first\ derivative\ function:}\\&\frac{d\left( \frac{1}{24}x^{4}arcsin(2)\right)}{dx}\\=&\frac{1}{24}*4x^{3}arcsin(2) + \frac{1}{24}x^{4}(\frac{(0)}{((1 - (2)^{2})^{\frac{1}{2}})})\\=&\frac{x^{3}arcsin(2)}{6}\\\\ &\color{blue}{The\ second\ derivative\ of\ function:} \\&\frac{d\left( \frac{x^{3}arcsin(2)}{6}\right)}{dx}\\=&\frac{3x^{2}arcsin(2)}{6} + \frac{x^{3}(\frac{(0)}{((1 - (2)^{2})^{\frac{1}{2}})})}{6}\\=&\frac{x^{2}arcsin(2)}{2}\\\\ &\color{blue}{The\ third\ derivative\ of\ function:} \\&\frac{d\left( \frac{x^{2}arcsin(2)}{2}\right)}{dx}\\=&\frac{2xarcsin(2)}{2} + \frac{x^{2}(\frac{(0)}{((1 - (2)^{2})^{\frac{1}{2}})})}{2}\\=&xarcsin(2)\\\\ &\color{blue}{The\ 4th\ derivative\ of\ function:} \\&\frac{d\left( xarcsin(2)\right)}{dx}\\=&arcsin(2) + x(\frac{(0)}{((1 - (2)^{2})^{\frac{1}{2}})})\\=&arcsin(2)\\ \end{split}\end{equation} \]Your problem has not been solved here? Please take a look at the hot problems !