Mathematics
语言:中文
Language:English

current location:Derivative function > Derivative function calculation history > Answer
    There are 1 questions in this calculation: for each question, the 1 derivative of x is calculated.
    Note that variables are case sensitive.
\[ \begin{equation}\begin{split}[1/1]Find\ the\ first\ derivative\ of\ function\ \frac{(1 - x)ln(x)}{(xln(1 - y))}\ with\ respect\ to\ x:\\\end{split}\end{equation} \]\[ \begin{equation}\begin{split}\\Solution:&\\ &Primitive\ function\ = \frac{ln(x)}{xln(-y + 1)} - \frac{ln(x)}{ln(-y + 1)}\\&\color{blue}{The\ first\ derivative\ function:}\\&\frac{d\left( \frac{ln(x)}{xln(-y + 1)} - \frac{ln(x)}{ln(-y + 1)}\right)}{dx}\\=&\frac{-ln(x)}{x^{2}ln(-y + 1)} + \frac{1}{x(x)ln(-y + 1)} + \frac{ln(x)*-(0 + 0)}{xln^{2}(-y + 1)(-y + 1)} - \frac{1}{(x)ln(-y + 1)} - \frac{ln(x)*-(0 + 0)}{ln^{2}(-y + 1)(-y + 1)}\\=&\frac{-ln(x)}{x^{2}ln(-y + 1)} + \frac{1}{x^{2}ln(-y + 1)} - \frac{1}{xln(-y + 1)}\\ \end{split}\end{equation} \]





Your problem has not been solved here? Please take a look at the  hot problems !


Return