There are 1 questions in this calculation: for each question, the 1 derivative of x is calculated.
Note that variables are case sensitive.\[ \begin{equation}\begin{split}[1/1]Find\ the\ first\ derivative\ of\ function\ k{x}^{(k - 1)}{(l - x)}^{(k - 1)}(l - 2x)\ with\ respect\ to\ x:\\\end{split}\end{equation} \]
\[ \begin{equation}\begin{split}\\Solution:&\\ &Primitive\ function\ = kl(l - x)^{(k - 1)}{x}^{(k - 1)} - 2kx{x}^{(k - 1)}(l - x)^{(k - 1)}\\&\color{blue}{The\ first\ derivative\ function:}\\&\frac{d\left( kl(l - x)^{(k - 1)}{x}^{(k - 1)} - 2kx{x}^{(k - 1)}(l - x)^{(k - 1)}\right)}{dx}\\=&kl((l - x)^{(k - 1)}((0 + 0)ln(l - x) + \frac{(k - 1)(0 - 1)}{(l - x)})){x}^{(k - 1)} + kl(l - x)^{(k - 1)}({x}^{(k - 1)}((0 + 0)ln(x) + \frac{(k - 1)(1)}{(x)})) - 2k{x}^{(k - 1)}(l - x)^{(k - 1)} - 2kx({x}^{(k - 1)}((0 + 0)ln(x) + \frac{(k - 1)(1)}{(x)}))(l - x)^{(k - 1)} - 2kx{x}^{(k - 1)}((l - x)^{(k - 1)}((0 + 0)ln(l - x) + \frac{(k - 1)(0 - 1)}{(l - x)}))\\=&\frac{-k^{2}l(l - x)^{(k - 1)}{x}^{(k - 1)}}{(l - x)} + \frac{kl(l - x)^{(k - 1)}{x}^{(k - 1)}}{(l - x)} + \frac{k^{2}l{x}^{(k - 1)}(l - x)^{(k - 1)}}{x} - \frac{kl{x}^{(k - 1)}(l - x)^{(k - 1)}}{x} - 2k^{2}{x}^{(k - 1)}(l - x)^{(k - 1)} + \frac{2k^{2}x(l - x)^{(k - 1)}{x}^{(k - 1)}}{(l - x)} - \frac{2kx(l - x)^{(k - 1)}{x}^{(k - 1)}}{(l - x)}\\ \end{split}\end{equation} \]Your problem has not been solved here? Please take a look at the hot problems !