There are 1 questions in this calculation: for each question, the 1 derivative of x is calculated.
Note that variables are case sensitive.\[ \begin{equation}\begin{split}[1/1]Find\ the\ first\ derivative\ of\ function\ l + xln(\frac{a}{(a + l)})\ with\ respect\ to\ x:\\\end{split}\end{equation} \]
\[ \begin{equation}\begin{split}\\Solution:&\\ &Primitive\ function\ = l + xln(\frac{a}{(a + l)})\\&\color{blue}{The\ first\ derivative\ function:}\\&\frac{d\left( l + xln(\frac{a}{(a + l)})\right)}{dx}\\=&0 + ln(\frac{a}{(a + l)}) + \frac{x((\frac{-(0 + 0)}{(a + l)^{2}})a + 0)}{(\frac{a}{(a + l)})}\\=&ln(\frac{a}{(a + l)})\\ \end{split}\end{equation} \]Your problem has not been solved here? Please take a look at the hot problems !