There are 1 questions in this calculation: for each question, the 1 derivative of x is calculated.
Note that variables are case sensitive.\[ \begin{equation}\begin{split}[1/1]Find\ the\ first\ derivative\ of\ function\ ln(1 + {e}^{(\frac{2}{x})})\ with\ respect\ to\ x:\\\end{split}\end{equation} \]
\[ \begin{equation}\begin{split}\\Solution:&\\ &Primitive\ function\ = ln({e}^{(\frac{2}{x})} + 1)\\&\color{blue}{The\ first\ derivative\ function:}\\&\frac{d\left( ln({e}^{(\frac{2}{x})} + 1)\right)}{dx}\\=&\frac{(({e}^{(\frac{2}{x})}((\frac{2*-1}{x^{2}})ln(e) + \frac{(\frac{2}{x})(0)}{(e)})) + 0)}{({e}^{(\frac{2}{x})} + 1)}\\=&\frac{-2{e}^{(\frac{2}{x})}}{({e}^{(\frac{2}{x})} + 1)x^{2}}\\ \end{split}\end{equation} \]Your problem has not been solved here? Please take a look at the hot problems !