There are 1 questions in this calculation: for each question, the 1 derivative of x is calculated.
Note that variables are case sensitive.\[ \begin{equation}\begin{split}[1/1]Find\ the\ first\ derivative\ of\ function\ x{e}^{x}(acos(2x) + bsin(2x))\ with\ respect\ to\ x:\\\end{split}\end{equation} \]
\[ \begin{equation}\begin{split}\\Solution:&\\ &Primitive\ function\ = ax{e}^{x}cos(2x) + bx{e}^{x}sin(2x)\\&\color{blue}{The\ first\ derivative\ function:}\\&\frac{d\left( ax{e}^{x}cos(2x) + bx{e}^{x}sin(2x)\right)}{dx}\\=&a{e}^{x}cos(2x) + ax({e}^{x}((1)ln(e) + \frac{(x)(0)}{(e)}))cos(2x) + ax{e}^{x}*-sin(2x)*2 + b{e}^{x}sin(2x) + bx({e}^{x}((1)ln(e) + \frac{(x)(0)}{(e)}))sin(2x) + bx{e}^{x}cos(2x)*2\\=&a{e}^{x}cos(2x) + ax{e}^{x}cos(2x) - 2ax{e}^{x}sin(2x) + b{e}^{x}sin(2x) + bx{e}^{x}sin(2x) + 2bx{e}^{x}cos(2x)\\ \end{split}\end{equation} \]Your problem has not been solved here? Please take a look at the hot problems !