Mathematics
语言:中文
Language:English

current location:Derivative function > Derivative function calculation history > Answer
    There are 1 questions in this calculation: for each question, the 4 derivative of x is calculated.
    Note that variables are case sensitive.
\[ \begin{equation}\begin{split}[1/1]Find\ the\ 4th\ derivative\ of\ function\ e^{{2}^{(x - 1)}}\ with\ respect\ to\ x:\\\end{split}\end{equation} \]\[ \begin{equation}\begin{split}\\Solution:&\\ &\color{blue}{The\ first\ derivative\ function:}\\&\frac{d\left( e^{{2}^{(x - 1)}}\right)}{dx}\\=&e^{{2}^{(x - 1)}}({2}^{(x - 1)}((1 + 0)ln(2) + \frac{(x - 1)(0)}{(2)}))\\=&{2}^{(x - 1)}e^{{2}^{(x - 1)}}ln(2)\\\\ &\color{blue}{The\ second\ derivative\ of\ function:} \\&\frac{d\left( {2}^{(x - 1)}e^{{2}^{(x - 1)}}ln(2)\right)}{dx}\\=&({2}^{(x - 1)}((1 + 0)ln(2) + \frac{(x - 1)(0)}{(2)}))e^{{2}^{(x - 1)}}ln(2) + {2}^{(x - 1)}e^{{2}^{(x - 1)}}({2}^{(x - 1)}((1 + 0)ln(2) + \frac{(x - 1)(0)}{(2)}))ln(2) + \frac{{2}^{(x - 1)}e^{{2}^{(x - 1)}}*0}{(2)}\\=&{2}^{(x - 1)}e^{{2}^{(x - 1)}}ln^{2}(2) + {2}^{(2x - 2)}e^{{2}^{(x - 1)}}ln^{2}(2)\\\\ &\color{blue}{The\ third\ derivative\ of\ function:} \\&\frac{d\left( {2}^{(x - 1)}e^{{2}^{(x - 1)}}ln^{2}(2) + {2}^{(2x - 2)}e^{{2}^{(x - 1)}}ln^{2}(2)\right)}{dx}\\=&({2}^{(x - 1)}((1 + 0)ln(2) + \frac{(x - 1)(0)}{(2)}))e^{{2}^{(x - 1)}}ln^{2}(2) + {2}^{(x - 1)}e^{{2}^{(x - 1)}}({2}^{(x - 1)}((1 + 0)ln(2) + \frac{(x - 1)(0)}{(2)}))ln^{2}(2) + \frac{{2}^{(x - 1)}e^{{2}^{(x - 1)}}*2ln(2)*0}{(2)} + ({2}^{(2x - 2)}((2 + 0)ln(2) + \frac{(2x - 2)(0)}{(2)}))e^{{2}^{(x - 1)}}ln^{2}(2) + {2}^{(2x - 2)}e^{{2}^{(x - 1)}}({2}^{(x - 1)}((1 + 0)ln(2) + \frac{(x - 1)(0)}{(2)}))ln^{2}(2) + \frac{{2}^{(2x - 2)}e^{{2}^{(x - 1)}}*2ln(2)*0}{(2)}\\=&{2}^{(x - 1)}e^{{2}^{(x - 1)}}ln^{3}(2) + 4 * {2}^{(2x - 2)}e^{{2}^{(x - 1)}}ln^{3}(2)\\\\ &\color{blue}{The\ 4th\ derivative\ of\ function:} \\&\frac{d\left( {2}^{(x - 1)}e^{{2}^{(x - 1)}}ln^{3}(2) + 4 * {2}^{(2x - 2)}e^{{2}^{(x - 1)}}ln^{3}(2)\right)}{dx}\\=&({2}^{(x - 1)}((1 + 0)ln(2) + \frac{(x - 1)(0)}{(2)}))e^{{2}^{(x - 1)}}ln^{3}(2) + {2}^{(x - 1)}e^{{2}^{(x - 1)}}({2}^{(x - 1)}((1 + 0)ln(2) + \frac{(x - 1)(0)}{(2)}))ln^{3}(2) + \frac{{2}^{(x - 1)}e^{{2}^{(x - 1)}}*3ln^{2}(2)*0}{(2)} + 4({2}^{(2x - 2)}((2 + 0)ln(2) + \frac{(2x - 2)(0)}{(2)}))e^{{2}^{(x - 1)}}ln^{3}(2) + 4 * {2}^{(2x - 2)}e^{{2}^{(x - 1)}}({2}^{(x - 1)}((1 + 0)ln(2) + \frac{(x - 1)(0)}{(2)}))ln^{3}(2) + \frac{4 * {2}^{(2x - 2)}e^{{2}^{(x - 1)}}*3ln^{2}(2)*0}{(2)}\\=&{2}^{(x - 1)}e^{{2}^{(x - 1)}}ln^{4}(2) + 13 * {2}^{(2x - 2)}e^{{2}^{(x - 1)}}ln^{4}(2)\\ \end{split}\end{equation} \]





Your problem has not been solved here? Please take a look at the  hot problems !


Return