There are 1 questions in this calculation: for each question, the 1 derivative of x is calculated.
Note that variables are case sensitive.\[ \begin{equation}\begin{split}[1/1]Find\ the\ first\ derivative\ of\ function\ {(a{x}^{v} + b{y}^{v})}^{\frac{1}{v}}\ with\ respect\ to\ x:\\\end{split}\end{equation} \]
\[ \begin{equation}\begin{split}\\Solution:&\\ &\color{blue}{The\ first\ derivative\ function:}\\&\frac{d\left( (a{x}^{v} + b{y}^{v})^{\frac{1}{v}}\right)}{dx}\\=&((a{x}^{v} + b{y}^{v})^{\frac{1}{v}}((0)ln(a{x}^{v} + b{y}^{v}) + \frac{(\frac{1}{v})(a({x}^{v}((0)ln(x) + \frac{(v)(1)}{(x)})) + b({y}^{v}((0)ln(y) + \frac{(v)(0)}{(y)})))}{(a{x}^{v} + b{y}^{v})}))\\=&\frac{a{x}^{v}(a{x}^{v} + b{y}^{v})^{\frac{1}{v}}}{(a{x}^{v} + b{y}^{v})x}\\ \end{split}\end{equation} \]Your problem has not been solved here? Please take a look at the hot problems !