There are 1 questions in this calculation: for each question, the 1 derivative of c is calculated.
Note that variables are case sensitive.\[ \begin{equation}\begin{split}[1/1]Find\ the\ first\ derivative\ of\ function\ -4ln(\frac{c}{2}) - 16ln(\frac{(1 - c)}{34})\ with\ respect\ to\ c:\\\end{split}\end{equation} \]
\[ \begin{equation}\begin{split}\\Solution:&\\ &Primitive\ function\ = -4ln(\frac{1}{2}c) - 16ln(\frac{-1}{34}c + \frac{1}{34})\\&\color{blue}{The\ first\ derivative\ function:}\\&\frac{d\left( -4ln(\frac{1}{2}c) - 16ln(\frac{-1}{34}c + \frac{1}{34})\right)}{dc}\\=&\frac{-4*\frac{1}{2}}{(\frac{1}{2}c)} - \frac{16(\frac{-1}{34} + 0)}{(\frac{-1}{34}c + \frac{1}{34})}\\=&\frac{-4}{c} + \frac{8}{17(\frac{-1}{34}c + \frac{1}{34})}\\ \end{split}\end{equation} \]Your problem has not been solved here? Please take a look at the hot problems !