There are 1 questions in this calculation: for each question, the 1 derivative of x is calculated.
Note that variables are case sensitive.\[ \begin{equation}\begin{split}[1/1]Find\ the\ first\ derivative\ of\ function\ sqrt(0.606 - 0.808*0.0005x)ln(5*10000000x + 1)\ with\ respect\ to\ x:\\\end{split}\end{equation} \]
\[ \begin{equation}\begin{split}\\Solution:&\\ &Primitive\ function\ = ln(50000000x + 1)sqrt(-0.000404x + 0.606)\\&\color{blue}{The\ first\ derivative\ function:}\\&\frac{d\left( ln(50000000x + 1)sqrt(-0.000404x + 0.606)\right)}{dx}\\=&\frac{(50000000 + 0)sqrt(-0.000404x + 0.606)}{(50000000x + 1)} + \frac{ln(50000000x + 1)(-0.000404 + 0)*0.5}{(-0.000404x + 0.606)^{\frac{1}{2}}}\\=&\frac{50000000sqrt(-0.000404x + 0.606)}{(50000000x + 1)} - \frac{0.000202ln(50000000x + 1)}{(-0.000404x + 0.606)^{\frac{1}{2}}}\\ \end{split}\end{equation} \]Your problem has not been solved here? Please take a look at the hot problems !