There are 1 questions in this calculation: for each question, the 2 derivative of x is calculated.
Note that variables are case sensitive.\[ \begin{equation}\begin{split}[1/1]Find\ the\ second\ derivative\ of\ function\ \frac{ln(x)}{(xx - x)}\ with\ respect\ to\ x:\\\end{split}\end{equation} \]
\[ \begin{equation}\begin{split}\\Solution:&\\ &Primitive\ function\ = \frac{ln(x)}{(x^{2} - x)}\\&\color{blue}{The\ first\ derivative\ function:}\\&\frac{d\left( \frac{ln(x)}{(x^{2} - x)}\right)}{dx}\\=&(\frac{-(2x - 1)}{(x^{2} - x)^{2}})ln(x) + \frac{1}{(x^{2} - x)(x)}\\=&\frac{-2xln(x)}{(x^{2} - x)^{2}} + \frac{ln(x)}{(x^{2} - x)^{2}} + \frac{1}{(x^{2} - x)x}\\\\ &\color{blue}{The\ second\ derivative\ of\ function:} \\&\frac{d\left( \frac{-2xln(x)}{(x^{2} - x)^{2}} + \frac{ln(x)}{(x^{2} - x)^{2}} + \frac{1}{(x^{2} - x)x}\right)}{dx}\\=&-2(\frac{-2(2x - 1)}{(x^{2} - x)^{3}})xln(x) - \frac{2ln(x)}{(x^{2} - x)^{2}} - \frac{2x}{(x^{2} - x)^{2}(x)} + (\frac{-2(2x - 1)}{(x^{2} - x)^{3}})ln(x) + \frac{1}{(x^{2} - x)^{2}(x)} + \frac{(\frac{-(2x - 1)}{(x^{2} - x)^{2}})}{x} + \frac{-1}{(x^{2} - x)x^{2}}\\=&\frac{8x^{2}ln(x)}{(x^{2} - x)^{3}} - \frac{8xln(x)}{(x^{2} - x)^{3}} - \frac{2ln(x)}{(x^{2} - x)^{2}} + \frac{2}{(x^{2} - x)^{2}x} + \frac{2ln(x)}{(x^{2} - x)^{3}} - \frac{1}{(x^{2} - x)x^{2}} - \frac{4}{(x^{2} - x)^{2}}\\ \end{split}\end{equation} \]Your problem has not been solved here? Please take a look at the hot problems !