There are 1 questions in this calculation: for each question, the 1 derivative of c is calculated.
Note that variables are case sensitive.\[ \begin{equation}\begin{split}[1/1]Find\ the\ first\ derivative\ of\ function\ \frac{-c{(\frac{m}{(cm + m - c)})}^{(m - 1)}}{m}\ with\ respect\ to\ c:\\\end{split}\end{equation} \]
\[ \begin{equation}\begin{split}\\Solution:&\\ &Primitive\ function\ = \frac{-c(\frac{m}{(mc + m - c)})^{(m - 1)}}{m}\\&\color{blue}{The\ first\ derivative\ function:}\\&\frac{d\left( \frac{-c(\frac{m}{(mc + m - c)})^{(m - 1)}}{m}\right)}{dc}\\=&\frac{-(\frac{m}{(mc + m - c)})^{(m - 1)}}{m} - \frac{c((\frac{m}{(mc + m - c)})^{(m - 1)}((0 + 0)ln(\frac{m}{(mc + m - c)}) + \frac{(m - 1)((\frac{-(m + 0 - 1)}{(mc + m - c)^{2}})m + 0)}{(\frac{m}{(mc + m - c)})}))}{m}\\=&\frac{-(\frac{m}{(mc + m - c)})^{(m - 1)}}{m} + \frac{mc(\frac{m}{(mc + m - c)})^{(m - 1)}}{(mc + m - c)} - \frac{2c(\frac{m}{(mc + m - c)})^{(m - 1)}}{(mc + m - c)} + \frac{c(\frac{m}{(mc + m - c)})^{(m - 1)}}{(mc + m - c)m}\\ \end{split}\end{equation} \]Your problem has not been solved here? Please take a look at the hot problems !