Mathematics
语言:中文
Language:English

current location:Derivative function > Derivative function calculation history > Answer
    There are 1 questions in this calculation: for each question, the 1 derivative of x is calculated.
    Note that variables are case sensitive.
\[ \begin{equation}\begin{split}[1/1]Find\ the\ first\ derivative\ of\ function\ Um{(\frac{xmax}{t})}^{m}\ with\ respect\ to\ x:\\\end{split}\end{equation} \]\[ \begin{equation}\begin{split}\\Solution:&\\ &Primitive\ function\ = Um(\frac{max^{2}}{t})^{m}\\&\color{blue}{The\ first\ derivative\ function:}\\&\frac{d\left( Um(\frac{max^{2}}{t})^{m}\right)}{dx}\\=&Um((\frac{max^{2}}{t})^{m}((0)ln(\frac{max^{2}}{t}) + \frac{(m)(\frac{ma*2x}{t})}{(\frac{max^{2}}{t})}))\\=&\frac{2Um^{2}(\frac{max^{2}}{t})^{m}}{x}\\ \end{split}\end{equation} \]





Your problem has not been solved here? Please take a look at the  hot problems !


Return