There are 1 questions in this calculation: for each question, the 1 derivative of n is calculated.
Note that variables are case sensitive.\[ \begin{equation}\begin{split}[1/1]Find\ the\ first\ derivative\ of\ function\ (8n - 8){(sqrt(n - \frac{47}{10} + \frac{14}{n}))}^{8}\ with\ respect\ to\ n:\\\end{split}\end{equation} \]
\[ \begin{equation}\begin{split}\\Solution:&\\ &Primitive\ function\ = 8nsqrt(n + \frac{14}{n} - \frac{47}{10})^{8} - 8sqrt(n + \frac{14}{n} - \frac{47}{10})^{8}\\&\color{blue}{The\ first\ derivative\ function:}\\&\frac{d\left( 8nsqrt(n + \frac{14}{n} - \frac{47}{10})^{8} - 8sqrt(n + \frac{14}{n} - \frac{47}{10})^{8}\right)}{dn}\\=&8sqrt(n + \frac{14}{n} - \frac{47}{10})^{8} + \frac{8n*8(n + \frac{14}{n} - \frac{47}{10})^{\frac{7}{2}}(1 + \frac{14*-1}{n^{2}} + 0)*\frac{1}{2}}{(n + \frac{14}{n} - \frac{47}{10})^{\frac{1}{2}}} - \frac{8*8(n + \frac{14}{n} - \frac{47}{10})^{\frac{7}{2}}(1 + \frac{14*-1}{n^{2}} + 0)*\frac{1}{2}}{(n + \frac{14}{n} - \frac{47}{10})^{\frac{1}{2}}}\\=&8sqrt(n + \frac{14}{n} - \frac{47}{10})^{8} + 32n^{4} + \frac{86696n^{2}}{25} - \frac{90776168}{125n^{2}} - \frac{12337024}{5n^{4}} - \frac{1581972n}{125} + \frac{16868488}{125n} + \frac{45733856}{25n^{3}} + \frac{1229312}{n^{5}} - \frac{2416n^{3}}{5} + \frac{1204892}{125}\\ \end{split}\end{equation} \]Your problem has not been solved here? Please take a look at the hot problems !