There are 1 questions in this calculation: for each question, the 1 derivative of x is calculated.
Note that variables are case sensitive.\[ \begin{equation}\begin{split}[1/1]Find\ the\ first\ derivative\ of\ function\ \frac{((1 - x)ln(1 - x))}{x}\ with\ respect\ to\ x:\\\end{split}\end{equation} \]
\[ \begin{equation}\begin{split}\\Solution:&\\ &Primitive\ function\ = -ln(-x + 1) + \frac{ln(-x + 1)}{x}\\&\color{blue}{The\ first\ derivative\ function:}\\&\frac{d\left( -ln(-x + 1) + \frac{ln(-x + 1)}{x}\right)}{dx}\\=&\frac{-(-1 + 0)}{(-x + 1)} + \frac{-ln(-x + 1)}{x^{2}} + \frac{(-1 + 0)}{x(-x + 1)}\\=&\frac{-1}{(-x + 1)x} - \frac{ln(-x + 1)}{x^{2}} + \frac{1}{(-x + 1)}\\ \end{split}\end{equation} \]Your problem has not been solved here? Please take a look at the hot problems !