There are 1 questions in this calculation: for each question, the 1 derivative of x is calculated.
Note that variables are case sensitive.\[ \begin{equation}\begin{split}[1/1]Find\ the\ first\ derivative\ of\ function\ -x + \frac{ln(\frac{(1 + x)}{(1 - x)})}{2}\ with\ respect\ to\ x:\\\end{split}\end{equation} \]
\[ \begin{equation}\begin{split}\\Solution:&\\ &Primitive\ function\ = -x + \frac{1}{2}ln(\frac{x}{(-x + 1)} + \frac{1}{(-x + 1)})\\&\color{blue}{The\ first\ derivative\ function:}\\&\frac{d\left( -x + \frac{1}{2}ln(\frac{x}{(-x + 1)} + \frac{1}{(-x + 1)})\right)}{dx}\\=&-1 + \frac{\frac{1}{2}((\frac{-(-1 + 0)}{(-x + 1)^{2}})x + \frac{1}{(-x + 1)} + (\frac{-(-1 + 0)}{(-x + 1)^{2}}))}{(\frac{x}{(-x + 1)} + \frac{1}{(-x + 1)})}\\=&\frac{x}{2(-x + 1)^{2}(\frac{x}{(-x + 1)} + \frac{1}{(-x + 1)})} + \frac{1}{2(-x + 1)^{2}(\frac{x}{(-x + 1)} + \frac{1}{(-x + 1)})} + \frac{1}{2(\frac{x}{(-x + 1)} + \frac{1}{(-x + 1)})(-x + 1)} - 1\\ \end{split}\end{equation} \]Your problem has not been solved here? Please take a look at the hot problems !