There are 1 questions in this calculation: for each question, the 1 derivative of x is calculated.
Note that variables are case sensitive.\[ \begin{equation}\begin{split}[1/1]Find\ the\ first\ derivative\ of\ function\ \frac{13111}{10} - \frac{6569}{5}{\frac{1}{(1 + \frac{x}{\frac{31}{10}})}}^{\frac{1363}{10}}\ with\ respect\ to\ x:\\\end{split}\end{equation} \]
\[ \begin{equation}\begin{split}\\Solution:&\\ &Primitive\ function\ = - \frac{\frac{6569}{5}}{(\frac{10}{31}x + 1)^{\frac{1363}{10}}} + \frac{13111}{10}\\&\color{blue}{The\ first\ derivative\ function:}\\&\frac{d\left( - \frac{\frac{6569}{5}}{(\frac{10}{31}x + 1)^{\frac{1363}{10}}} + \frac{13111}{10}\right)}{dx}\\=& - \frac{6569}{5}(\frac{\frac{-1363}{10}(\frac{10}{31} + 0)}{(\frac{10}{31}x + 1)^{\frac{1373}{10}}}) + 0\\=&\frac{8953547}{155(\frac{10}{31}x + 1)^{\frac{1373}{10}}}\\ \end{split}\end{equation} \]Your problem has not been solved here? Please take a look at the hot problems !