There are 1 questions in this calculation: for each question, the 1 derivative of n is calculated.
Note that variables are case sensitive.\[ \begin{equation}\begin{split}[1/1]Find\ the\ first\ derivative\ of\ function\ {({(n - 4 + \frac{14}{n})}^{\frac{1}{2}})}^{4}\ with\ respect\ to\ n:\\\end{split}\end{equation} \]
\[ \begin{equation}\begin{split}\\Solution:&\\ &Primitive\ function\ = (n + \frac{14}{n} - 4)^{2}\\&\color{blue}{The\ first\ derivative\ function:}\\&\frac{d\left( (n + \frac{14}{n} - 4)^{2}\right)}{dn}\\=&(2(n + \frac{14}{n} - 4)(1 + \frac{14*-1}{n^{2}} + 0))\\=& - \frac{392}{n^{3}} + 2n + \frac{112}{n^{2}} - 8\\ \end{split}\end{equation} \]Your problem has not been solved here? Please take a look at the hot problems !