Mathematics
语言:中文
Language:English

current location:Derivative function > Derivative function calculation history > Answer
    There are 1 questions in this calculation: for each question, the 4 derivative of r is calculated.
    Note that variables are case sensitive.
\[ \begin{equation}\begin{split}[1/1]Find\ the\ 4th\ derivative\ of\ function\ \frac{m{v}^{2}}{r}\ with\ respect\ to\ r:\\\end{split}\end{equation} \]\[ \begin{equation}\begin{split}\\Solution:&\\ &Primitive\ function\ = \frac{mv^{2}}{r}\\&\color{blue}{The\ first\ derivative\ function:}\\&\frac{d\left( \frac{mv^{2}}{r}\right)}{dr}\\=&\frac{mv^{2}*-1}{r^{2}}\\=&\frac{-mv^{2}}{r^{2}}\\\\ &\color{blue}{The\ second\ derivative\ of\ function:} \\&\frac{d\left( \frac{-mv^{2}}{r^{2}}\right)}{dr}\\=&\frac{-mv^{2}*-2}{r^{3}}\\=&\frac{2mv^{2}}{r^{3}}\\\\ &\color{blue}{The\ third\ derivative\ of\ function:} \\&\frac{d\left( \frac{2mv^{2}}{r^{3}}\right)}{dr}\\=&\frac{2mv^{2}*-3}{r^{4}}\\=&\frac{-6mv^{2}}{r^{4}}\\\\ &\color{blue}{The\ 4th\ derivative\ of\ function:} \\&\frac{d\left( \frac{-6mv^{2}}{r^{4}}\right)}{dr}\\=&\frac{-6mv^{2}*-4}{r^{5}}\\=&\frac{24mv^{2}}{r^{5}}\\ \end{split}\end{equation} \]





Your problem has not been solved here? Please take a look at the  hot problems !


Return