There are 1 questions in this calculation: for each question, the 1 derivative of x is calculated.
Note that variables are case sensitive.\[ \begin{equation}\begin{split}[1/1]Find\ the\ first\ derivative\ of\ function\ \frac{({(kx + b)}^{(a + 1)})}{(k(a + 1))}\ with\ respect\ to\ x:\\\end{split}\end{equation} \]
\[ \begin{equation}\begin{split}\\Solution:&\\ &Primitive\ function\ = \frac{(kx + b)^{(a + 1)}}{(ka + k)}\\&\color{blue}{The\ first\ derivative\ function:}\\&\frac{d\left( \frac{(kx + b)^{(a + 1)}}{(ka + k)}\right)}{dx}\\=&(\frac{-(0 + 0)}{(ka + k)^{2}})(kx + b)^{(a + 1)} + \frac{((kx + b)^{(a + 1)}((0 + 0)ln(kx + b) + \frac{(a + 1)(k + 0)}{(kx + b)}))}{(ka + k)}\\=&\frac{ka(kx + b)^{(a + 1)}}{(ka + k)(kx + b)} + \frac{k(kx + b)^{(a + 1)}}{(ka + k)(kx + b)}\\ \end{split}\end{equation} \]Your problem has not been solved here? Please take a look at the hot problems !