Mathematics
语言:中文
Language:English

current location:Derivative function > Derivative function calculation history > Answer
    There are 1 questions in this calculation: for each question, the 1 derivative of x is calculated.
    Note that variables are case sensitive.
\[ \begin{equation}\begin{split}[1/1]Find\ the\ first\ derivative\ of\ function\ \frac{({(3 - 2x)}^{2})}{(5{(x - 1)}^{2} + 1)}\ with\ respect\ to\ x:\\\end{split}\end{equation} \]\[ \begin{equation}\begin{split}\\Solution:&\\ &Primitive\ function\ = \frac{4x^{2}}{(5x^{2} - 10x + 6)} - \frac{12x}{(5x^{2} - 10x + 6)} + \frac{9}{(5x^{2} - 10x + 6)}\\&\color{blue}{The\ first\ derivative\ function:}\\&\frac{d\left( \frac{4x^{2}}{(5x^{2} - 10x + 6)} - \frac{12x}{(5x^{2} - 10x + 6)} + \frac{9}{(5x^{2} - 10x + 6)}\right)}{dx}\\=&4(\frac{-(5*2x - 10 + 0)}{(5x^{2} - 10x + 6)^{2}})x^{2} + \frac{4*2x}{(5x^{2} - 10x + 6)} - 12(\frac{-(5*2x - 10 + 0)}{(5x^{2} - 10x + 6)^{2}})x - \frac{12}{(5x^{2} - 10x + 6)} + 9(\frac{-(5*2x - 10 + 0)}{(5x^{2} - 10x + 6)^{2}})\\=&\frac{-40x^{3}}{(5x^{2} - 10x + 6)^{2}} + \frac{160x^{2}}{(5x^{2} - 10x + 6)^{2}} + \frac{8x}{(5x^{2} - 10x + 6)} - \frac{210x}{(5x^{2} - 10x + 6)^{2}} - \frac{12}{(5x^{2} - 10x + 6)} + \frac{90}{(5x^{2} - 10x + 6)^{2}}\\ \end{split}\end{equation} \]





Your problem has not been solved here? Please take a look at the  hot problems !


Return