There are 1 questions in this calculation: for each question, the 1 derivative of x is calculated.
Note that variables are case sensitive.\[ \begin{equation}\begin{split}[1/1]Find\ the\ first\ derivative\ of\ function\ (x + \frac{e}{(r(x + \frac{1}{p}))})\ with\ respect\ to\ x:\\\end{split}\end{equation} \]
\[ \begin{equation}\begin{split}\\Solution:&\\ &Primitive\ function\ = x + \frac{e}{(rx + \frac{r}{p})}\\&\color{blue}{The\ first\ derivative\ function:}\\&\frac{d\left( x + \frac{e}{(rx + \frac{r}{p})}\right)}{dx}\\=&1 + (\frac{-(r + 0)}{(rx + \frac{r}{p})^{2}})e + \frac{0}{(rx + \frac{r}{p})}\\=& - \frac{re}{(rx + \frac{r}{p})^{2}} + 1\\ \end{split}\end{equation} \]Your problem has not been solved here? Please take a look at the hot problems !