Mathematics
语言:中文
Language:English

current location:Derivative function > Derivative function calculation history > Answer
    There are 1 questions in this calculation: for each question, the 1 derivative of o is calculated.
    Note that variables are case sensitive.
\[ \begin{equation}\begin{split}[1/1]Find\ the\ first\ derivative\ of\ function\ \frac{(asin(2o) + 2zcos(2o))}{(b - acos(2o) + zsin(2o))}\ with\ respect\ to\ o:\\\end{split}\end{equation} \]\[ \begin{equation}\begin{split}\\Solution:&\\ &Primitive\ function\ = \frac{asin(2o)}{(b - acos(2o) + zsin(2o))} + \frac{2zcos(2o)}{(b - acos(2o) + zsin(2o))}\\&\color{blue}{The\ first\ derivative\ function:}\\&\frac{d\left( \frac{asin(2o)}{(b - acos(2o) + zsin(2o))} + \frac{2zcos(2o)}{(b - acos(2o) + zsin(2o))}\right)}{do}\\=&(\frac{-(0 - a*-sin(2o)*2 + zcos(2o)*2)}{(b - acos(2o) + zsin(2o))^{2}})asin(2o) + \frac{acos(2o)*2}{(b - acos(2o) + zsin(2o))} + 2(\frac{-(0 - a*-sin(2o)*2 + zcos(2o)*2)}{(b - acos(2o) + zsin(2o))^{2}})zcos(2o) + \frac{2z*-sin(2o)*2}{(b - acos(2o) + zsin(2o))}\\=&\frac{-2a^{2}sin^{2}(2o)}{(b - acos(2o) + zsin(2o))^{2}} - \frac{6azsin(2o)cos(2o)}{(b - acos(2o) + zsin(2o))^{2}} + \frac{2acos(2o)}{(b - acos(2o) + zsin(2o))} - \frac{4z^{2}cos^{2}(2o)}{(b - acos(2o) + zsin(2o))^{2}} - \frac{4zsin(2o)}{(b - acos(2o) + zsin(2o))}\\ \end{split}\end{equation} \]





Your problem has not been solved here? Please take a look at the  hot problems !


Return