There are 1 questions in this calculation: for each question, the 1 derivative of x is calculated.
Note that variables are case sensitive.\[ \begin{equation}\begin{split}[1/1]Find\ the\ first\ derivative\ of\ function\ \frac{{e}^{(xz)}}{({e}^{(xz)} + {e}^{(xy)})}\ with\ respect\ to\ x:\\\end{split}\end{equation} \]
\[ \begin{equation}\begin{split}\\Solution:&\\ &Primitive\ function\ = \frac{{e}^{(zx)}}{({e}^{(zx)} + {e}^{(yx)})}\\&\color{blue}{The\ first\ derivative\ function:}\\&\frac{d\left( \frac{{e}^{(zx)}}{({e}^{(zx)} + {e}^{(yx)})}\right)}{dx}\\=&(\frac{-(({e}^{(zx)}((z)ln(e) + \frac{(zx)(0)}{(e)})) + ({e}^{(yx)}((y)ln(e) + \frac{(yx)(0)}{(e)})))}{({e}^{(zx)} + {e}^{(yx)})^{2}}){e}^{(zx)} + \frac{({e}^{(zx)}((z)ln(e) + \frac{(zx)(0)}{(e)}))}{({e}^{(zx)} + {e}^{(yx)})}\\=&\frac{-z{e}^{(2(zx))}}{({e}^{(zx)} + {e}^{(yx)})^{2}} - \frac{y{e}^{(yx)}{e}^{(zx)}}{({e}^{(zx)} + {e}^{(yx)})^{2}} + \frac{z{e}^{(zx)}}{({e}^{(zx)} + {e}^{(yx)})}\\ \end{split}\end{equation} \]Your problem has not been solved here? Please take a look at the hot problems !