总述:本次共解1题。其中
☆方程1题
〖 1/1方程〗
作业:求方程 (x+2)/(x+1)+(x+8)/(x+7) = (x+6)/(x+5)+(x+4)x(x+3) 的解.
题型:方程
解:原方程:| | ( | x | + | 2 | ) | ÷ | ( | x | + | 1 | ) | + | ( | x | + | 8 | ) | ÷ | ( | x | + | 7 | ) | = | ( | x | + | 6 | ) | ÷ | ( | x | + | 5 | ) | + | ( | x | + | 4 | ) | x | ( | x | + | 3 | ) |
| 方程两边同时乘以: | ( | x | + | 1 | ) | , | ( | x | + | 5 | ) |
| | ( | x | + | 2 | ) | ( | x | + | 5 | ) | + | ( | x | + | 8 | ) | ÷ | ( | x | + | 7 | ) | × | ( | x | + | 1 | ) | ( | x | + | 5 | ) | = | ( | x | + | 6 | ) | ( | x | + | 1 | ) | + | ( | x | + | 4 | ) | x | ( | x | + | 3 | ) | ( | x | + | 1 | ) | ( | x | + | 5 | ) |
去掉方程左边的一个括号:
| | x | ( | x | + | 5 | ) | + | 2 | ( | x | + | 5 | ) | + | ( | x | + | 8 | ) | ÷ | ( | x | + | 7 | ) | × | ( | x | + | 1 | ) | ( | x | + | 5 | ) | = | ( | x | + | 6 | ) | ( | x | + | 1 | ) | + | ( | x | + | 4 | ) | x | ( | x | + | 3 | ) | ( | x | + | 1 | ) | ( | x | + | 5 | ) |
去掉方程右边的一个括号:
| | x | ( | x | + | 5 | ) | + | 2 | ( | x | + | 5 | ) | + | ( | x | + | 8 | ) | ÷ | ( | x | + | 7 | ) | × | ( | x | + | 1 | ) | ( | x | + | 5 | ) | = | x | ( | x | + | 1 | ) | + | 6 | ( | x | + | 1 | ) | + | ( | x | + | 4 | ) | x | ( | x | + | 3 | ) | ( | x | + | 1 | ) | ( | x | + | 5 | ) |
| | x | ( | x | + | 5 | ) | ( | x | + | 7 | ) | + | 2 | ( | x | + | 5 | ) | ( | x | + | 7 | ) | + | ( | x | + | 8 | ) | ( | x | + | 1 | ) | ( | x | + | 5 | ) | = | x | ( | x | + | 1 | ) | ( | x | + | 7 | ) | + | 6 | ( | x | + | 1 | ) | ( | x | + | 7 | ) | + | ( | x | + | 4 | ) | x | ( | x | + | 3 | ) | ( | x | + | 1 | ) | ( | x | + | 5 | ) | ( | x | + | 7 | ) |
去掉方程左边的一个括号:
| | x | x | ( | x | + | 7 | ) | + | x | × | 5 | ( | x | + | 7 | ) | + | 2 | ( | x | + | 5 | ) | ( | x | + | 7 | ) | + | ( | x | + | 8 | ) | ( | x | + | 1 | ) | ( | x | + | 5 | ) | = | x | ( | x | + | 1 | ) | ( | x | + | 7 | ) | + | 6 | ( | x | + | 1 | ) | ( | x | + | 7 | ) | + | ( | x | + | 4 | ) | x | ( | x | + | 3 | ) | ( | x | + | 1 | ) | ( | x | + | 5 | ) | ( | x | + | 7 | ) |
去掉方程右边的一个括号:
| | x | x | ( | x | + | 7 | ) | + | x | × | 5 | ( | x | + | 7 | ) | + | 2 | ( | x | + | 5 | ) | ( | x | + | 7 | ) | + | ( | x | + | 8 | ) | ( | x | + | 1 | ) | ( | x | + | 5 | ) | = | x | x | ( | x | + | 7 | ) | + | x | × | 1 | ( | x | + | 7 | ) | + | 6 | ( | x | + | 1 | ) | ( | x | + | 7 | ) | + | ( | x | + | 4 | ) | x | ( | x | + | 3 | ) |
去掉方程左边的一个括号:
| | x | x | x | + | x | x | × | 7 | + | x | × | 5 | ( | x | + | 7 | ) | + | 2 | ( | x | + | 5 | ) | ( | x | + | 7 | ) | = | x | x | ( | x | + | 7 | ) | + | x | × | 1 | ( | x | + | 7 | ) | + | 6 | ( | x | + | 1 | ) | ( | x | + | 7 | ) | + | ( | x | + | 4 | ) | x | ( | x | + | 3 | ) |
去掉方程右边的一个括号:
| | x | x | x | + | x | x | × | 7 | + | x | × | 5 | ( | x | + | 7 | ) | + | 2 | ( | x | + | 5 | ) | ( | x | + | 7 | ) | = | x | x | x | + | x | x | × | 7 | + | x | × | 1 | ( | x | + | 7 | ) | + | 6 | ( | x | + | 1 | ) | ( | x | + | 7 | ) |
去掉方程左边的一个括号:
| | x | x | x | + | x | x | × | 7 | + | x | × | 5 | x | + | x | × | 5 | × | 7 | = | x | x | x | + | x | x | × | 7 | + | x | × | 1 | ( | x | + | 7 | ) | + | 6 | ( | x | + | 1 | ) | ( | x | + | 7 | ) |
去掉方程右边的一个括号:
| | x | x | x | + | x | x | × | 7 | + | x | × | 5 | x | + | x | × | 5 | × | 7 | = | x | x | x | + | x | x | × | 7 | + | x | × | 1 | x | + | x | × | 1 | × | 7 |
方程化简为:
| | x | x | x | + | x | x | × | 7 | + | x | × | 5 | x | + | x | × | 35 | + | 2 | = | x | x | x | + | x | x | × | 7 | + | x | × | 1 | x | + | x | × | 7 | + | 6 |
去掉方程左边的一个括号:
| | x | x | x | + | x | x | × | 7 | + | x | × | 5 | x | + | 35 | x | + | 2 | = | x | x | x | + | x | x | × | 7 | + | x | × | 1 | x | + | 7 | x | + | 6 |
去掉方程右边的一个括号:
| | x | x | x | + | x | x | × | 7 | + | x | × | 5 | x | + | 35 | x | + | 2 | = | x | x | x | + | x | x | × | 7 | + | x | × | 1 | x | + | 7 | x | + | 6 |
方程化简为:
| | x | x | x | + | x | x | × | 7 | + | x | × | 5 | x | + | 35 | x | + | 2 | = | x | x | x | + | x | x | × | 7 | + | x | × | 1 | x | + | 7 | x | + | 6 |
去掉方程左边的一个括号:
| | x | x | x | + | x | x | × | 7 | + | x | × | 5 | x | + | 35 | x | + | 2 | = | x | x | x | + | x | x | × | 7 | + | x | × | 1 | x | + | 7 | x | + | 6 |
去掉方程右边的一个括号:
| | x | x | x | + | x | x | × | 7 | + | x | × | 5 | x | + | 35 | x | + | 2 | = | x | x | x | + | x | x | × | 7 | + | x | × | 1 | x | + | 7 | x | + | 6 |
方程化简为:
| | x | x | x | + | x | x | × | 7 | + | x | × | 5 | x | + | 35 | x | + | 2 | = | x | x | x | + | x | x | × | 7 | + | x | × | 1 | x | + | 7 | x | + | 6 |
方程化简为:
| | x | x | x | + | x | x | × | 7 | + | x | × | 5 | x | + | 49 | x | + | 2 | = | x | x | x | + | x | x | × | 7 | + | x | × | 1 | x | + | 49 | x | + | 6 |
去掉方程左边的一个括号:
| | x | x | x | + | x | x | × | 7 | + | x | × | 5 | x | + | 49 | x | + | 2 | = | x | x | x | + | x | x | × | 7 | + | x | × | 1 | x | + | 49 | x | + | 6 |
去掉方程右边的一个括号:
| | x | x | x | + | x | x | × | 7 | + | x | × | 5 | x | + | 49 | x | + | 2 | = | x | x | x | + | x | x | × | 7 | + | x | × | 1 | x | + | 49 | x | + | 6 |
方程化简为:
| | x | x | x | + | x | x | × | 7 | + | x | × | 5 | x | + | 49 | x | + | 2 | = | x | x | x | + | x | x | × | 7 | + | x | × | 1 | x | + | 49 | x | + | 6 |
方程化简为:
| | x | x | x | + | x | x | × | 7 | + | x | × | 5 | x | + | 59 | x | + | 2 | = | x | x | x | + | x | x | × | 7 | + | x | × | 1 | x | + | 55 | x | + | 6 |
去掉方程左边的一个括号:
| | x | x | x | + | x | x | × | 7 | + | x | × | 5 | x | + | 59 | x | + | 2 | = | x | x | x | + | x | x | × | 7 | + | x | × | 1 | x | + | 55 | x | + | 6 |
方程化为一般式后,有公因式:
( x + 4 )
由
x + 4 = 0
得:
不能由因式分解法得出的解:
x2≈-4.894954 ,保留6位小数
x3≈-3.090252 ,保留6位小数
x4≈-1.143358 ,保留6位小数
x5≈0.140186 ,保留6位小数
有 5个解。
解程的详细方法请参阅:《方程的解法》
你的问题在这里没有得到解决?请到 热门难题 里面看看吧!