数学
手机端

语言:中文
Language:English






当前位置:求导函数 > 导函数计算历史 > 答案
    本次共计算 1 个题目:每一题对 x 求 1 阶导数。
    注意,变量是区分大小写的。
\[ \begin{equation}\begin{split}【1/1】求函数0.5x(1 + \frac{sinh(sqrt(\frac{2i(x + 0.044715{x}^{3})}{p}))}{cosh(sqrt(\frac{2i(x + 0.044715{x}^{3})}{p}))}) 关于 x 的 1 阶导数:\\\end{split}\end{equation} \]\[ \begin{equation}\begin{split}\\解:&\\ &原函数 = \frac{0.5xsinh(sqrt(\frac{2ix}{p} + \frac{0.08943ix}{p}))}{cosh(sqrt(\frac{2ix}{p} + \frac{0.08943ix}{p}))} + 0.5x\\&\color{blue}{函数的第 1 阶导数:}\\&\frac{d\left( \frac{0.5xsinh(sqrt(\frac{2ix}{p} + \frac{0.08943ix}{p}))}{cosh(sqrt(\frac{2ix}{p} + \frac{0.08943ix}{p}))} + 0.5x\right)}{dx}\\=&\frac{0.5sinh(sqrt(\frac{2ix}{p} + \frac{0.08943ix}{p}))}{cosh(sqrt(\frac{2ix}{p} + \frac{0.08943ix}{p}))} + \frac{0.5xcosh(sqrt(\frac{2ix}{p} + \frac{0.08943ix}{p}))(\frac{2i}{p} + \frac{0.08943i}{p})*0.5}{(\frac{2ix}{p} + \frac{0.08943ix}{p})^{\frac{1}{2}}cosh(sqrt(\frac{2ix}{p} + \frac{0.08943ix}{p}))} + \frac{0.5xsinh(sqrt(\frac{2ix}{p} + \frac{0.08943ix}{p}))*-sinh(sqrt(\frac{2ix}{p} + \frac{0.08943ix}{p}))(\frac{2i}{p} + \frac{0.08943i}{p})*0.5}{cosh^{2}(sqrt(\frac{2ix}{p} + \frac{0.08943ix}{p}))(\frac{2ix}{p} + \frac{0.08943ix}{p})^{\frac{1}{2}}} + 0.5\\=&\frac{0.5sinh(sqrt(\frac{2ix}{p} + \frac{0.08943ix}{p}))}{cosh(sqrt(\frac{2ix}{p} + \frac{0.08943ix}{p}))} + \frac{0.5ixcosh(sqrt(\frac{2ix}{p} + \frac{0.08943ix}{p}))}{(\frac{2ix}{p} + \frac{0.08943ix}{p})^{\frac{1}{2}}pcosh(sqrt(\frac{2ix}{p} + \frac{0.08943ix}{p}))} + \frac{0.0223575ixcosh(sqrt(\frac{2ix}{p} + \frac{0.08943ix}{p}))}{(\frac{2ix}{p} + \frac{0.08943ix}{p})^{\frac{1}{2}}pcosh(sqrt(\frac{2ix}{p} + \frac{0.08943ix}{p}))} - \frac{0.5ixsinh(sqrt(\frac{2ix}{p} + \frac{0.08943ix}{p}))sinh(sqrt(\frac{2ix}{p} + \frac{0.08943ix}{p}))}{(\frac{2ix}{p} + \frac{0.08943ix}{p})^{\frac{1}{2}}pcosh^{2}(sqrt(\frac{2ix}{p} + \frac{0.08943ix}{p}))} - \frac{0.0223575ixsinh(sqrt(\frac{2ix}{p} + \frac{0.08943ix}{p}))sinh(sqrt(\frac{2ix}{p} + \frac{0.08943ix}{p}))}{(\frac{2ix}{p} + \frac{0.08943ix}{p})^{\frac{1}{2}}pcosh^{2}(sqrt(\frac{2ix}{p} + \frac{0.08943ix}{p}))} + 0.5\\ \end{split}\end{equation} \]





你的问题在这里没有得到解决?请到 热门难题 里面看看吧!


返 回