数学
手机端

语言:中文
Language:English






当前位置:求导函数 > 导函数计算历史 > 答案
    本次共计算 1 个题目:每一题对 x 求 1 阶导数。
    注意,变量是区分大小写的。
\[ \begin{equation}\begin{split}【1/1】求函数ln({(2x + 1)}^{4}{\frac{1}{(3x - 1)}}^{4}) 关于 x 的 1 阶导数:\\\end{split}\end{equation} \]\[ \begin{equation}\begin{split}\\解:&\\ &原函数 = ln(\frac{16x^{4}}{(3x - 1)^{4}} + \frac{32x^{3}}{(3x - 1)^{4}} + \frac{24x^{2}}{(3x - 1)^{4}} + \frac{8x}{(3x - 1)^{4}} + \frac{1}{(3x - 1)^{4}})\\&\color{blue}{函数的第 1 阶导数:}\\&\frac{d\left( ln(\frac{16x^{4}}{(3x - 1)^{4}} + \frac{32x^{3}}{(3x - 1)^{4}} + \frac{24x^{2}}{(3x - 1)^{4}} + \frac{8x}{(3x - 1)^{4}} + \frac{1}{(3x - 1)^{4}})\right)}{dx}\\=&\frac{(16(\frac{-4(3 + 0)}{(3x - 1)^{5}})x^{4} + \frac{16*4x^{3}}{(3x - 1)^{4}} + 32(\frac{-4(3 + 0)}{(3x - 1)^{5}})x^{3} + \frac{32*3x^{2}}{(3x - 1)^{4}} + 24(\frac{-4(3 + 0)}{(3x - 1)^{5}})x^{2} + \frac{24*2x}{(3x - 1)^{4}} + 8(\frac{-4(3 + 0)}{(3x - 1)^{5}})x + \frac{8}{(3x - 1)^{4}} + (\frac{-4(3 + 0)}{(3x - 1)^{5}}))}{(\frac{16x^{4}}{(3x - 1)^{4}} + \frac{32x^{3}}{(3x - 1)^{4}} + \frac{24x^{2}}{(3x - 1)^{4}} + \frac{8x}{(3x - 1)^{4}} + \frac{1}{(3x - 1)^{4}})}\\=&\frac{-192x^{4}}{(3x - 1)^{5}(\frac{16x^{4}}{(3x - 1)^{4}} + \frac{32x^{3}}{(3x - 1)^{4}} + \frac{24x^{2}}{(3x - 1)^{4}} + \frac{8x}{(3x - 1)^{4}} + \frac{1}{(3x - 1)^{4}})} + \frac{64x^{3}}{(3x - 1)^{4}(\frac{16x^{4}}{(3x - 1)^{4}} + \frac{32x^{3}}{(3x - 1)^{4}} + \frac{24x^{2}}{(3x - 1)^{4}} + \frac{8x}{(3x - 1)^{4}} + \frac{1}{(3x - 1)^{4}})} - \frac{384x^{3}}{(3x - 1)^{5}(\frac{16x^{4}}{(3x - 1)^{4}} + \frac{32x^{3}}{(3x - 1)^{4}} + \frac{24x^{2}}{(3x - 1)^{4}} + \frac{8x}{(3x - 1)^{4}} + \frac{1}{(3x - 1)^{4}})} + \frac{96x^{2}}{(3x - 1)^{4}(\frac{16x^{4}}{(3x - 1)^{4}} + \frac{32x^{3}}{(3x - 1)^{4}} + \frac{24x^{2}}{(3x - 1)^{4}} + \frac{8x}{(3x - 1)^{4}} + \frac{1}{(3x - 1)^{4}})} - \frac{288x^{2}}{(3x - 1)^{5}(\frac{16x^{4}}{(3x - 1)^{4}} + \frac{32x^{3}}{(3x - 1)^{4}} + \frac{24x^{2}}{(3x - 1)^{4}} + \frac{8x}{(3x - 1)^{4}} + \frac{1}{(3x - 1)^{4}})} + \frac{48x}{(3x - 1)^{4}(\frac{16x^{4}}{(3x - 1)^{4}} + \frac{32x^{3}}{(3x - 1)^{4}} + \frac{24x^{2}}{(3x - 1)^{4}} + \frac{8x}{(3x - 1)^{4}} + \frac{1}{(3x - 1)^{4}})} - \frac{96x}{(3x - 1)^{5}(\frac{16x^{4}}{(3x - 1)^{4}} + \frac{32x^{3}}{(3x - 1)^{4}} + \frac{24x^{2}}{(3x - 1)^{4}} + \frac{8x}{(3x - 1)^{4}} + \frac{1}{(3x - 1)^{4}})} - \frac{12}{(3x - 1)^{5}(\frac{16x^{4}}{(3x - 1)^{4}} + \frac{32x^{3}}{(3x - 1)^{4}} + \frac{24x^{2}}{(3x - 1)^{4}} + \frac{8x}{(3x - 1)^{4}} + \frac{1}{(3x - 1)^{4}})} + \frac{8}{(\frac{16x^{4}}{(3x - 1)^{4}} + \frac{32x^{3}}{(3x - 1)^{4}} + \frac{24x^{2}}{(3x - 1)^{4}} + \frac{8x}{(3x - 1)^{4}} + \frac{1}{(3x - 1)^{4}})(3x - 1)^{4}}\\ \end{split}\end{equation} \]





你的问题在这里没有得到解决?请到 热门难题 里面看看吧!


返 回