数学
手机端

语言:中文
Language:English






当前位置:求导函数 > 导函数计算历史 > 答案
    本次共计算 1 个题目:每一题对 x 求 1 阶导数。
    注意,变量是区分大小写的。
\[ \begin{equation}\begin{split}【1/1】求函数ln(\frac{({x}^{2} - 2{({x}^{2} - 9)}^{\frac{1}{2}})}{({x}^{2} - 18)}) 关于 x 的 1 阶导数:\\\end{split}\end{equation} \]\[ \begin{equation}\begin{split}\\解:&\\ &原函数 = ln(\frac{x^{2}}{(x^{2} - 18)} - \frac{2(x^{2} - 9)^{\frac{1}{2}}}{(x^{2} - 18)})\\&\color{blue}{函数的第 1 阶导数:}\\&\frac{d\left( ln(\frac{x^{2}}{(x^{2} - 18)} - \frac{2(x^{2} - 9)^{\frac{1}{2}}}{(x^{2} - 18)})\right)}{dx}\\=&\frac{((\frac{-(2x + 0)}{(x^{2} - 18)^{2}})x^{2} + \frac{2x}{(x^{2} - 18)} - 2(\frac{-(2x + 0)}{(x^{2} - 18)^{2}})(x^{2} - 9)^{\frac{1}{2}} - \frac{2(\frac{\frac{1}{2}(2x + 0)}{(x^{2} - 9)^{\frac{1}{2}}})}{(x^{2} - 18)})}{(\frac{x^{2}}{(x^{2} - 18)} - \frac{2(x^{2} - 9)^{\frac{1}{2}}}{(x^{2} - 18)})}\\=&\frac{-2x^{3}}{(\frac{x^{2}}{(x^{2} - 18)} - \frac{2(x^{2} - 9)^{\frac{1}{2}}}{(x^{2} - 18)})(x^{2} - 18)^{2}} + \frac{2x}{(x^{2} - 18)(\frac{x^{2}}{(x^{2} - 18)} - \frac{2(x^{2} - 9)^{\frac{1}{2}}}{(x^{2} - 18)})} + \frac{4(x^{2} - 9)^{\frac{1}{2}}x}{(\frac{x^{2}}{(x^{2} - 18)} - \frac{2(x^{2} - 9)^{\frac{1}{2}}}{(x^{2} - 18)})(x^{2} - 18)^{2}} - \frac{2x}{(x^{2} - 9)^{\frac{1}{2}}(x^{2} - 18)(\frac{x^{2}}{(x^{2} - 18)} - \frac{2(x^{2} - 9)^{\frac{1}{2}}}{(x^{2} - 18)})}\\ \end{split}\end{equation} \]





你的问题在这里没有得到解决?请到 热门难题 里面看看吧!


返 回