数学
手机端

语言:中文
Language:English






当前位置:求导函数 > 导函数计算历史 > 答案
    本次共计算 1 个题目:每一题对 x 求 1 阶导数。
    注意,变量是区分大小写的。
\[ \begin{equation}\begin{split}【1/1】求函数4185.9873{(1 - {e}^{(0.05752(x + 0.175))})}^{3} 关于 x 的 1 阶导数:\\\end{split}\end{equation} \]\[ \begin{equation}\begin{split}\\解:&\\ &原函数 = -4185.9873{e}^{(0.05752x + 0.010066)}{e}^{(0.05752x + 0.010066)}{e}^{(0.05752x + 0.010066)} + 4185.9873{e}^{(0.05752x + 0.010066)}{e}^{(0.05752x + 0.010066)} + 4185.9873{e}^{(0.05752x + 0.010066)}{e}^{(0.05752x + 0.010066)} + 4185.9873{e}^{(0.05752x + 0.010066)}{e}^{(0.05752x + 0.010066)} - 4185.9873{e}^{(0.05752x + 0.010066)} - 4185.9873{e}^{(0.05752x + 0.010066)} - 4185.9873{e}^{(0.05752x + 0.010066)} + 4185.9873\\&\color{blue}{函数的第 1 阶导数:}\\&\frac{d\left( -4185.9873{e}^{(0.05752x + 0.010066)}{e}^{(0.05752x + 0.010066)}{e}^{(0.05752x + 0.010066)} + 4185.9873{e}^{(0.05752x + 0.010066)}{e}^{(0.05752x + 0.010066)} + 4185.9873{e}^{(0.05752x + 0.010066)}{e}^{(0.05752x + 0.010066)} + 4185.9873{e}^{(0.05752x + 0.010066)}{e}^{(0.05752x + 0.010066)} - 4185.9873{e}^{(0.05752x + 0.010066)} - 4185.9873{e}^{(0.05752x + 0.010066)} - 4185.9873{e}^{(0.05752x + 0.010066)} + 4185.9873\right)}{dx}\\=&-4185.9873({e}^{(0.05752x + 0.010066)}((0.05752 + 0)ln(e) + \frac{(0.05752x + 0.010066)(0)}{(e)})){e}^{(0.05752x + 0.010066)}{e}^{(0.05752x + 0.010066)} - 4185.9873{e}^{(0.05752x + 0.010066)}({e}^{(0.05752x + 0.010066)}((0.05752 + 0)ln(e) + \frac{(0.05752x + 0.010066)(0)}{(e)})){e}^{(0.05752x + 0.010066)} - 4185.9873{e}^{(0.05752x + 0.010066)}{e}^{(0.05752x + 0.010066)}({e}^{(0.05752x + 0.010066)}((0.05752 + 0)ln(e) + \frac{(0.05752x + 0.010066)(0)}{(e)})) + 4185.9873({e}^{(0.05752x + 0.010066)}((0.05752 + 0)ln(e) + \frac{(0.05752x + 0.010066)(0)}{(e)})){e}^{(0.05752x + 0.010066)} + 4185.9873{e}^{(0.05752x + 0.010066)}({e}^{(0.05752x + 0.010066)}((0.05752 + 0)ln(e) + \frac{(0.05752x + 0.010066)(0)}{(e)})) + 4185.9873({e}^{(0.05752x + 0.010066)}((0.05752 + 0)ln(e) + \frac{(0.05752x + 0.010066)(0)}{(e)})){e}^{(0.05752x + 0.010066)} + 4185.9873{e}^{(0.05752x + 0.010066)}({e}^{(0.05752x + 0.010066)}((0.05752 + 0)ln(e) + \frac{(0.05752x + 0.010066)(0)}{(e)})) + 4185.9873({e}^{(0.05752x + 0.010066)}((0.05752 + 0)ln(e) + \frac{(0.05752x + 0.010066)(0)}{(e)})){e}^{(0.05752x + 0.010066)} + 4185.9873{e}^{(0.05752x + 0.010066)}({e}^{(0.05752x + 0.010066)}((0.05752 + 0)ln(e) + \frac{(0.05752x + 0.010066)(0)}{(e)})) - 4185.9873({e}^{(0.05752x + 0.010066)}((0.05752 + 0)ln(e) + \frac{(0.05752x + 0.010066)(0)}{(e)})) - 4185.9873({e}^{(0.05752x + 0.010066)}((0.05752 + 0)ln(e) + \frac{(0.05752x + 0.010066)(0)}{(e)})) - 4185.9873({e}^{(0.05752x + 0.010066)}((0.05752 + 0)ln(e) + \frac{(0.05752x + 0.010066)(0)}{(e)})) + 0\\=&-240.777989496{e}^{(0.05752x + 0.010066)}{e}^{(0.05752x + 0.010066)}{e}^{(0.05752x + 0.010066)} - 240.777989496{e}^{(0.05752x + 0.010066)}{e}^{(0.05752x + 0.010066)}{e}^{(0.05752x + 0.010066)} - 240.777989496{e}^{(0.05752x + 0.010066)}{e}^{(0.05752x + 0.010066)}{e}^{(0.05752x + 0.010066)} + 240.777989496{e}^{(0.05752x + 0.010066)}{e}^{(0.05752x + 0.010066)} + 240.777989496{e}^{(0.05752x + 0.010066)}{e}^{(0.05752x + 0.010066)} + 240.777989496{e}^{(0.05752x + 0.010066)}{e}^{(0.05752x + 0.010066)} + 240.777989496{e}^{(0.05752x + 0.010066)}{e}^{(0.05752x + 0.010066)} + 240.777989496{e}^{(0.05752x + 0.010066)}{e}^{(0.05752x + 0.010066)} + 240.777989496{e}^{(0.05752x + 0.010066)}{e}^{(0.05752x + 0.010066)} - 240.777989496{e}^{(0.05752x + 0.010066)} - 240.777989496{e}^{(0.05752x + 0.010066)} - 240.777989496{e}^{(0.05752x + 0.010066)}\\ \end{split}\end{equation} \]





你的问题在这里没有得到解决?请到 热门难题 里面看看吧!


返 回