数学
手机端

语言:中文
Language:English






当前位置:求导函数 > 导函数计算历史 > 答案
    本次共计算 1 个题目:每一题对 x 求 1 阶导数。
    注意,变量是区分大小写的。
\[ \begin{equation}\begin{split}【1/1】求函数\frac{({e}^{x} - cos(x))}{(ln(1 + {x}^{2}))} 关于 x 的 1 阶导数:\\\end{split}\end{equation} \]\[ \begin{equation}\begin{split}\\解:&\\ &原函数 = \frac{{e}^{x}}{ln(x^{2} + 1)} - \frac{cos(x)}{ln(x^{2} + 1)}\\&\color{blue}{函数的第 1 阶导数:}\\&\frac{d\left( \frac{{e}^{x}}{ln(x^{2} + 1)} - \frac{cos(x)}{ln(x^{2} + 1)}\right)}{dx}\\=&\frac{({e}^{x}((1)ln(e) + \frac{(x)(0)}{(e)}))}{ln(x^{2} + 1)} + \frac{{e}^{x}*-(2x + 0)}{ln^{2}(x^{2} + 1)(x^{2} + 1)} - \frac{-(2x + 0)cos(x)}{ln^{2}(x^{2} + 1)(x^{2} + 1)} - \frac{-sin(x)}{ln(x^{2} + 1)}\\=&\frac{{e}^{x}}{ln(x^{2} + 1)} - \frac{2x{e}^{x}}{(x^{2} + 1)ln^{2}(x^{2} + 1)} + \frac{2xcos(x)}{(x^{2} + 1)ln^{2}(x^{2} + 1)} + \frac{sin(x)}{ln(x^{2} + 1)}\\ \end{split}\end{equation} \]





你的问题在这里没有得到解决?请到 热门难题 里面看看吧!


返 回