数学
手机端

语言:中文
Language:English






当前位置:求导函数 > 导函数计算历史 > 答案
    本次共计算 1 个题目:每一题对 x 求 1 阶导数。
    注意,变量是区分大小写的。
\[ \begin{equation}\begin{split}【1/1】求函数\frac{{a}^{x}}{ln(\frac{1}{cos({x}^{2})})} 关于 x 的 1 阶导数:\\\end{split}\end{equation} \]\[ \begin{equation}\begin{split}\\解:&\\ &原函数 = \frac{{a}^{x}}{ln(\frac{1}{cos(x^{2})})}\\&\color{blue}{函数的第 1 阶导数:}\\&\frac{d\left( \frac{{a}^{x}}{ln(\frac{1}{cos(x^{2})})}\right)}{dx}\\=&\frac{({a}^{x}((1)ln(a) + \frac{(x)(0)}{(a)}))}{ln(\frac{1}{cos(x^{2})})} + \frac{{a}^{x}*-sin(x^{2})*2x}{ln^{2}(\frac{1}{cos(x^{2})})(\frac{1}{cos(x^{2})})cos^{2}(x^{2})}\\=&\frac{{a}^{x}ln(a)}{ln(\frac{1}{cos(x^{2})})} - \frac{2x{a}^{x}sin(x^{2})}{ln^{2}(\frac{1}{cos(x^{2})})cos(x^{2})}\\ \end{split}\end{equation} \]





你的问题在这里没有得到解决?请到 热门难题 里面看看吧!


返 回