数学
手机端

语言:中文
Language:English






当前位置:求导函数 > 导函数计算历史 > 答案
    本次共计算 1 个题目:每一题对 y 求 2 阶导数。
    注意,变量是区分大小写的。
\[ \begin{equation}\begin{split}【1/1】求函数ln(\frac{(1 + {y}^{4})}{(2 + {x}^{2})}) 关于 y 的 2 阶导数:\\\end{split}\end{equation} \]\[ \begin{equation}\begin{split}\\解:&\\ &原函数 = ln(\frac{y^{4}}{(x^{2} + 2)} + \frac{1}{(x^{2} + 2)})\\&\color{blue}{函数的第 1 阶导数:}\\&\frac{d\left( ln(\frac{y^{4}}{(x^{2} + 2)} + \frac{1}{(x^{2} + 2)})\right)}{dy}\\=&\frac{((\frac{-(0 + 0)}{(x^{2} + 2)^{2}})y^{4} + \frac{4y^{3}}{(x^{2} + 2)} + (\frac{-(0 + 0)}{(x^{2} + 2)^{2}}))}{(\frac{y^{4}}{(x^{2} + 2)} + \frac{1}{(x^{2} + 2)})}\\=&\frac{4y^{3}}{(x^{2} + 2)(\frac{y^{4}}{(x^{2} + 2)} + \frac{1}{(x^{2} + 2)})}\\\\ &\color{blue}{函数的第 2 阶导数:} \\&\frac{d\left( \frac{4y^{3}}{(x^{2} + 2)(\frac{y^{4}}{(x^{2} + 2)} + \frac{1}{(x^{2} + 2)})}\right)}{dy}\\=&\frac{4(\frac{-(0 + 0)}{(x^{2} + 2)^{2}})y^{3}}{(\frac{y^{4}}{(x^{2} + 2)} + \frac{1}{(x^{2} + 2)})} + \frac{4(\frac{-((\frac{-(0 + 0)}{(x^{2} + 2)^{2}})y^{4} + \frac{4y^{3}}{(x^{2} + 2)} + (\frac{-(0 + 0)}{(x^{2} + 2)^{2}}))}{(\frac{y^{4}}{(x^{2} + 2)} + \frac{1}{(x^{2} + 2)})^{2}})y^{3}}{(x^{2} + 2)} + \frac{4*3y^{2}}{(x^{2} + 2)(\frac{y^{4}}{(x^{2} + 2)} + \frac{1}{(x^{2} + 2)})}\\=&\frac{-16y^{6}}{(\frac{y^{4}}{(x^{2} + 2)} + \frac{1}{(x^{2} + 2)})^{2}(x^{2} + 2)^{2}} + \frac{12y^{2}}{(\frac{y^{4}}{(x^{2} + 2)} + \frac{1}{(x^{2} + 2)})(x^{2} + 2)}\\ \end{split}\end{equation} \]





你的问题在这里没有得到解决?请到 热门难题 里面看看吧!


返 回