数学
手机端

语言:中文
Language:English






当前位置:求导函数 > 导函数计算历史 > 答案
    本次共计算 1 个题目:每一题对 x 求 1 阶导数。
    注意,变量是区分大小写的。
\[ \begin{equation}\begin{split}【1/1】求函数ln(s)qe^{t}(\frac{(1 + sin(x))}{cos(x)}) - \frac{tan(x){(sin(x))}^{2}}{2} 关于 x 的 1 阶导数:\\\end{split}\end{equation} \]\[ \begin{equation}\begin{split}\\解:&\\ &原函数 = \frac{qe^{t}ln(s)sin(x)}{cos(x)} + \frac{qe^{t}ln(s)}{cos(x)} - \frac{1}{2}sin^{2}(x)tan(x)\\&\color{blue}{函数的第 1 阶导数:}\\&\frac{d\left( \frac{qe^{t}ln(s)sin(x)}{cos(x)} + \frac{qe^{t}ln(s)}{cos(x)} - \frac{1}{2}sin^{2}(x)tan(x)\right)}{dx}\\=&\frac{qe^{t}*0ln(s)sin(x)}{cos(x)} + \frac{qe^{t}*0sin(x)}{(s)cos(x)} + \frac{qe^{t}ln(s)cos(x)}{cos(x)} + \frac{qe^{t}ln(s)sin(x)sin(x)}{cos^{2}(x)} + \frac{qe^{t}*0ln(s)}{cos(x)} + \frac{qe^{t}*0}{(s)cos(x)} + \frac{qe^{t}ln(s)sin(x)}{cos^{2}(x)} - \frac{1}{2}*2sin(x)cos(x)tan(x) - \frac{1}{2}sin^{2}(x)sec^{2}(x)(1)\\=&\frac{qe^{t}ln(s)sin^{2}(x)}{cos^{2}(x)} + \frac{qe^{t}ln(s)sin(x)}{cos^{2}(x)} + qe^{t}ln(s) - sin(x)cos(x)tan(x) - \frac{sin^{2}(x)sec^{2}(x)}{2}\\ \end{split}\end{equation} \]





你的问题在这里没有得到解决?请到 热门难题 里面看看吧!


返 回