数学
手机端

语言:中文
Language:English






当前位置:求导函数 > 导函数计算历史 > 答案
    本次共计算 1 个题目:每一题对 t 求 1 阶导数。
    注意,变量是区分大小写的。
\[ \begin{equation}\begin{split}【1/1】求函数\frac{6.391r}{(r + t)} - \frac{0.722}{10000} 关于 t 的 1 阶导数:\\\end{split}\end{equation} \]\[ \begin{equation}\begin{split}\\解:&\\ &原函数 = \frac{6.391r}{(r + t)} - 0.0000722\\&\color{blue}{函数的第 1 阶导数:}\\&\frac{d\left( \frac{6.391r}{(r + t)} - 0.0000722\right)}{dt}\\=&6.391(\frac{-(0 + 1)}{(r + t)^{2}})r + 0 + 0\\=&\frac{-6.391r}{(r + t)(r + t)}\\ \end{split}\end{equation} \]





你的问题在这里没有得到解决?请到 热门难题 里面看看吧!


返 回