数学
手机端

语言:中文
Language:English






当前位置:求导函数 > 导函数计算历史 > 答案
    本次共计算 1 个题目:每一题对 z 求 3 阶导数。
    注意,变量是区分大小写的。
\[ \begin{equation}\begin{split}【1/1】求函数\frac{e^{z}}{(1 + z)} 关于 z 的 3 阶导数:\\\end{split}\end{equation} \]\[ \begin{equation}\begin{split}\\解:&\\ &原函数 = \frac{e^{z}}{(z + 1)}\\&\color{blue}{函数的第 1 阶导数:}\\&\frac{d\left( \frac{e^{z}}{(z + 1)}\right)}{dz}\\=&(\frac{-(1 + 0)}{(z + 1)^{2}})e^{z} + \frac{e^{z}}{(z + 1)}\\=&\frac{-e^{z}}{(z + 1)^{2}} + \frac{e^{z}}{(z + 1)}\\\\ &\color{blue}{函数的第 2 阶导数:} \\&\frac{d\left( \frac{-e^{z}}{(z + 1)^{2}} + \frac{e^{z}}{(z + 1)}\right)}{dz}\\=&-(\frac{-2(1 + 0)}{(z + 1)^{3}})e^{z} - \frac{e^{z}}{(z + 1)^{2}} + (\frac{-(1 + 0)}{(z + 1)^{2}})e^{z} + \frac{e^{z}}{(z + 1)}\\=&\frac{2e^{z}}{(z + 1)^{3}} - \frac{2e^{z}}{(z + 1)^{2}} + \frac{e^{z}}{(z + 1)}\\\\ &\color{blue}{函数的第 3 阶导数:} \\&\frac{d\left( \frac{2e^{z}}{(z + 1)^{3}} - \frac{2e^{z}}{(z + 1)^{2}} + \frac{e^{z}}{(z + 1)}\right)}{dz}\\=&2(\frac{-3(1 + 0)}{(z + 1)^{4}})e^{z} + \frac{2e^{z}}{(z + 1)^{3}} - 2(\frac{-2(1 + 0)}{(z + 1)^{3}})e^{z} - \frac{2e^{z}}{(z + 1)^{2}} + (\frac{-(1 + 0)}{(z + 1)^{2}})e^{z} + \frac{e^{z}}{(z + 1)}\\=&\frac{-6e^{z}}{(z + 1)^{4}} + \frac{6e^{z}}{(z + 1)^{3}} - \frac{3e^{z}}{(z + 1)^{2}} + \frac{e^{z}}{(z + 1)}\\ \end{split}\end{equation} \]





你的问题在这里没有得到解决?请到 热门难题 里面看看吧!


返 回