数学
手机端

语言:中文
Language:English






当前位置:求导函数 > 导函数计算历史 > 答案
    本次共计算 1 个题目:每一题对 x 求 1 阶导数。
    注意,变量是区分大小写的。
\[ \begin{equation}\begin{split}【1/1】求函数(sinh(x)cosh(x - {3}^{x})){{\frac{1}{x}}^{({x}^{2} + {x}^{2} - 1)}}^{3} + {x}^{2}{x}^{3} 关于 x 的 1 阶导数:\\\end{split}\end{equation} \]\[ \begin{equation}\begin{split}\\解:&\\ &原函数 = {\frac{1}{x}}^{(6x^{2} - 3)}sinh(x)cosh(x - {3}^{x}) + x^{5}\\&\color{blue}{函数的第 1 阶导数:}\\&\frac{d\left( {\frac{1}{x}}^{(6x^{2} - 3)}sinh(x)cosh(x - {3}^{x}) + x^{5}\right)}{dx}\\=&({\frac{1}{x}}^{(6x^{2} - 3)}((6*2x + 0)ln(\frac{1}{x}) + \frac{(6x^{2} - 3)(\frac{-1}{x^{2}})}{(\frac{1}{x})}))sinh(x)cosh(x - {3}^{x}) + {\frac{1}{x}}^{(6x^{2} - 3)}cosh(x)cosh(x - {3}^{x}) + {\frac{1}{x}}^{(6x^{2} - 3)}sinh(x)sinh(x - {3}^{x})(1 - ({3}^{x}((1)ln(3) + \frac{(x)(0)}{(3)}))) + 5x^{4}\\=&12x{\frac{1}{x}}^{(6x^{2} - 3)}ln(\frac{1}{x})sinh(x)cosh(x - {3}^{x}) - 6x{\frac{1}{x}}^{(6x^{2} - 3)}sinh(x)cosh(x - {3}^{x}) + \frac{3{\frac{1}{x}}^{(6x^{2} - 3)}sinh(x)cosh(x - {3}^{x})}{x} + {\frac{1}{x}}^{(6x^{2} - 3)}cosh(x)cosh(x - {3}^{x}) + {\frac{1}{x}}^{(6x^{2} - 3)}sinh(x - {3}^{x})sinh(x) - {3}^{x}{\frac{1}{x}}^{(6x^{2} - 3)}ln(3)sinh(x - {3}^{x})sinh(x) + 5x^{4}\\ \end{split}\end{equation} \]





你的问题在这里没有得到解决?请到 热门难题 里面看看吧!


返 回