数学
手机端

语言:中文
Language:English






当前位置:求导函数 > 导函数计算历史 > 答案
    本次共计算 1 个题目:每一题对 x 求 1 阶导数。
    注意,变量是区分大小写的。
\[ \begin{equation}\begin{split}【1/1】求函数sqrt(xln(x)sqrt(1 - sin(x))) 关于 x 的 1 阶导数:\\\end{split}\end{equation} \]\[ \begin{equation}\begin{split}\\解:&\\ &原函数 = sqrt(xln(x)sqrt(-sin(x) + 1))\\&\color{blue}{函数的第 1 阶导数:}\\&\frac{d\left( sqrt(xln(x)sqrt(-sin(x) + 1))\right)}{dx}\\=&\frac{(ln(x)sqrt(-sin(x) + 1) + \frac{xsqrt(-sin(x) + 1)}{(x)} + \frac{xln(x)(-cos(x) + 0)*\frac{1}{2}}{(-sin(x) + 1)^{\frac{1}{2}}})*\frac{1}{2}}{(xln(x)sqrt(-sin(x) + 1))^{\frac{1}{2}}}\\=&\frac{ln^{\frac{1}{2}}(x)sqrt(-sin(x) + 1)^{\frac{1}{2}}}{2x^{\frac{1}{2}}} + \frac{sqrt(-sin(x) + 1)^{\frac{1}{2}}}{2x^{\frac{1}{2}}ln^{\frac{1}{2}}(x)} - \frac{x^{\frac{1}{2}}ln^{\frac{1}{2}}(x)cos(x)}{4(-sin(x) + 1)^{\frac{1}{2}}sqrt(-sin(x) + 1)^{\frac{1}{2}}}\\ \end{split}\end{equation} \]





你的问题在这里没有得到解决?请到 热门难题 里面看看吧!


返 回