数学
手机端

语言:中文
Language:English






当前位置:求导函数 > 导函数计算历史 > 答案
    本次共计算 1 个题目:每一题对 x 求 1 阶导数。
    注意,变量是区分大小写的。
\[ \begin{equation}\begin{split}【1/1】求函数(1 - {x}^{2})ln(x + {e}^{x}){\frac{1}{x}}^{3} 关于 x 的 1 阶导数:\\\end{split}\end{equation} \]\[ \begin{equation}\begin{split}\\解:&\\ &原函数 = \frac{ln(x + {e}^{x})}{x^{3}} - \frac{ln(x + {e}^{x})}{x}\\&\color{blue}{函数的第 1 阶导数:}\\&\frac{d\left( \frac{ln(x + {e}^{x})}{x^{3}} - \frac{ln(x + {e}^{x})}{x}\right)}{dx}\\=&\frac{-3ln(x + {e}^{x})}{x^{4}} + \frac{(1 + ({e}^{x}((1)ln(e) + \frac{(x)(0)}{(e)})))}{x^{3}(x + {e}^{x})} - \frac{-ln(x + {e}^{x})}{x^{2}} - \frac{(1 + ({e}^{x}((1)ln(e) + \frac{(x)(0)}{(e)})))}{x(x + {e}^{x})}\\=&\frac{-3ln(x + {e}^{x})}{x^{4}} + \frac{{e}^{x}}{(x + {e}^{x})x^{3}} - \frac{{e}^{x}}{(x + {e}^{x})x} + \frac{ln(x + {e}^{x})}{x^{2}} - \frac{1}{(x + {e}^{x})x} + \frac{1}{(x + {e}^{x})x^{3}}\\ \end{split}\end{equation} \]





你的问题在这里没有得到解决?请到 热门难题 里面看看吧!


返 回