数学
手机端

语言:中文
Language:English






当前位置:求导函数 > 导函数计算历史 > 答案
    本次共计算 1 个题目:每一题对 x 求 1 阶导数。
    注意,变量是区分大小写的。
\[ \begin{equation}\begin{split}【1/1】求函数(1 - {cos(x)}^{2})({x}^{2} - {tan(x)}^{2}) 关于 x 的 1 阶导数:\\\end{split}\end{equation} \]\[ \begin{equation}\begin{split}\\解:&\\ &原函数 = - x^{2}cos^{2}(x) - tan^{2}(x) + x^{2} + cos^{2}(x)tan^{2}(x)\\&\color{blue}{函数的第 1 阶导数:}\\&\frac{d\left( - x^{2}cos^{2}(x) - tan^{2}(x) + x^{2} + cos^{2}(x)tan^{2}(x)\right)}{dx}\\=& - 2xcos^{2}(x) - x^{2}*-2cos(x)sin(x) - 2tan(x)sec^{2}(x)(1) + 2x + -2cos(x)sin(x)tan^{2}(x) + cos^{2}(x)*2tan(x)sec^{2}(x)(1)\\=& - 2xcos^{2}(x) + 2x^{2}sin(x)cos(x) - 2tan(x)sec^{2}(x) + 2x - 2sin(x)cos(x)tan^{2}(x) + 2cos^{2}(x)tan(x)sec^{2}(x)\\ \end{split}\end{equation} \]





你的问题在这里没有得到解决?请到 热门难题 里面看看吧!


返 回