数学
手机端

语言:中文
Language:English






当前位置:求导函数 > 导函数计算历史 > 答案
    本次共计算 1 个题目:每一题对 x 求 2 阶导数。
    注意,变量是区分大小写的。
\[ \begin{equation}\begin{split}【1/1】求函数{sin(x)}^{cos(x)} 关于 x 的 2 阶导数:\\\end{split}\end{equation} \]\[ \begin{equation}\begin{split}\\解:&\\ &\color{blue}{函数的第 1 阶导数:}\\&\frac{d\left( {sin(x)}^{cos(x)}\right)}{dx}\\=&({sin(x)}^{cos(x)}((-sin(x))ln(sin(x)) + \frac{(cos(x))(cos(x))}{(sin(x))}))\\=&-{sin(x)}^{cos(x)}ln(sin(x))sin(x) + \frac{{sin(x)}^{cos(x)}cos^{2}(x)}{sin(x)}\\\\ &\color{blue}{函数的第 2 阶导数:} \\&\frac{d\left( -{sin(x)}^{cos(x)}ln(sin(x))sin(x) + \frac{{sin(x)}^{cos(x)}cos^{2}(x)}{sin(x)}\right)}{dx}\\=&-({sin(x)}^{cos(x)}((-sin(x))ln(sin(x)) + \frac{(cos(x))(cos(x))}{(sin(x))}))ln(sin(x))sin(x) - \frac{{sin(x)}^{cos(x)}cos(x)sin(x)}{(sin(x))} - {sin(x)}^{cos(x)}ln(sin(x))cos(x) + \frac{({sin(x)}^{cos(x)}((-sin(x))ln(sin(x)) + \frac{(cos(x))(cos(x))}{(sin(x))}))cos^{2}(x)}{sin(x)} + \frac{{sin(x)}^{cos(x)}*-cos(x)cos^{2}(x)}{sin^{2}(x)} + \frac{{sin(x)}^{cos(x)}*-2cos(x)sin(x)}{sin(x)}\\=&{sin(x)}^{cos(x)}ln^{2}(sin(x))sin^{2}(x) - 2{sin(x)}^{cos(x)}ln(sin(x))cos^{2}(x) - 3{sin(x)}^{cos(x)}cos(x) - {sin(x)}^{cos(x)}ln(sin(x))cos(x) + \frac{{sin(x)}^{cos(x)}cos^{4}(x)}{sin^{2}(x)} - \frac{{sin(x)}^{cos(x)}cos^{3}(x)}{sin^{2}(x)}\\ \end{split}\end{equation} \]





你的问题在这里没有得到解决?请到 热门难题 里面看看吧!


返 回