本次共计算 1 个题目:每一题对 x 求 1 阶导数。
注意,变量是区分大小写的。\[ \begin{equation}\begin{split}【1/1】求函数1680sin({x}^{2}) + 13440{x}^{2}cos({x}^{2}) - 13440{x}^{4}sin({x}^{2}) - 3584{x}^{6}cos({x}^{2}) + 256{x}^{8}sin({x}^{2}) 关于 x 的 1 阶导数:\\\end{split}\end{equation} \]
\[ \begin{equation}\begin{split}\\解:&\\ &原函数 = 1680sin(x^{2}) + 13440x^{2}cos(x^{2}) - 13440x^{4}sin(x^{2}) - 3584x^{6}cos(x^{2}) + 256x^{8}sin(x^{2})\\&\color{blue}{函数的第 1 阶导数:}\\&\frac{d\left( 1680sin(x^{2}) + 13440x^{2}cos(x^{2}) - 13440x^{4}sin(x^{2}) - 3584x^{6}cos(x^{2}) + 256x^{8}sin(x^{2})\right)}{dx}\\=&1680cos(x^{2})*2x + 13440*2xcos(x^{2}) + 13440x^{2}*-sin(x^{2})*2x - 13440*4x^{3}sin(x^{2}) - 13440x^{4}cos(x^{2})*2x - 3584*6x^{5}cos(x^{2}) - 3584x^{6}*-sin(x^{2})*2x + 256*8x^{7}sin(x^{2}) + 256x^{8}cos(x^{2})*2x\\=&30240xcos(x^{2}) - 80640x^{3}sin(x^{2}) - 48384x^{5}cos(x^{2}) + 9216x^{7}sin(x^{2}) + 512x^{9}cos(x^{2})\\ \end{split}\end{equation} \]你的问题在这里没有得到解决?请到 热门难题 里面看看吧!