数学
手机端

语言:中文
Language:English






当前位置:求导函数 > 导函数计算历史 > 答案
    本次共计算 1 个题目:每一题对 x 求 1 阶导数。
    注意,变量是区分大小写的。
\[ \begin{equation}\begin{split}【1/1】求函数tan(cos(2x - 2 + x(sin(3x - 5tan(x))))) 关于 x 的 1 阶导数:\\\end{split}\end{equation} \]\[ \begin{equation}\begin{split}\\解:&\\ &原函数 = tan(cos(xsin(3x - 5tan(x)) + 2x - 2))\\&\color{blue}{函数的第 1 阶导数:}\\&\frac{d\left( tan(cos(xsin(3x - 5tan(x)) + 2x - 2))\right)}{dx}\\=&sec^{2}(cos(xsin(3x - 5tan(x)) + 2x - 2))(-sin(xsin(3x - 5tan(x)) + 2x - 2)(sin(3x - 5tan(x)) + xcos(3x - 5tan(x))(3 - 5sec^{2}(x)(1)) + 2 + 0))\\=&-sin(3x - 5tan(x))sin(xsin(3x - 5tan(x)) + 2x - 2)sec^{2}(cos(xsin(3x - 5tan(x)) + 2x - 2)) + 5xsin(xsin(3x - 5tan(x)) + 2x - 2)cos(3x - 5tan(x))sec^{2}(x)sec^{2}(cos(xsin(3x - 5tan(x)) + 2x - 2)) - 3xsin(xsin(3x - 5tan(x)) + 2x - 2)cos(3x - 5tan(x))sec^{2}(cos(xsin(3x - 5tan(x)) + 2x - 2)) - 2sin(xsin(3x - 5tan(x)) + 2x - 2)sec^{2}(cos(xsin(3x - 5tan(x)) + 2x - 2))\\ \end{split}\end{equation} \]





你的问题在这里没有得到解决?请到 热门难题 里面看看吧!


返 回