数学
手机端

语言:中文
Language:English






当前位置:求导函数 > 导函数计算历史 > 答案
    本次共计算 1 个题目:每一题对 x 求 4 阶导数。
    注意,变量是区分大小写的。
\[ \begin{equation}\begin{split}【1/1】求函数\frac{(ae^{bx + bc + d} - ace^{-(bx + bc + d)})}{(e^{bx + bc + d} + e^{-(bx + bc + d)})} 关于 x 的 4 阶导数:\\\end{split}\end{equation} \]\[ \begin{equation}\begin{split}\\解:&\\ &原函数 = \frac{ae^{bx + bc + d}}{(e^{bx + bc + d} + e^{-bx - bc - d})} - \frac{ace^{-bx - bc - d}}{(e^{bx + bc + d} + e^{-bx - bc - d})}\\&\color{blue}{函数的第 1 阶导数:}\\&\frac{d\left( \frac{ae^{bx + bc + d}}{(e^{bx + bc + d} + e^{-bx - bc - d})} - \frac{ace^{-bx - bc - d}}{(e^{bx + bc + d} + e^{-bx - bc - d})}\right)}{dx}\\=&(\frac{-(e^{bx + bc + d}(b + 0 + 0) + e^{-bx - bc - d}(-b + 0 + 0))}{(e^{bx + bc + d} + e^{-bx - bc - d})^{2}})ae^{bx + bc + d} + \frac{ae^{bx + bc + d}(b + 0 + 0)}{(e^{bx + bc + d} + e^{-bx - bc - d})} - (\frac{-(e^{bx + bc + d}(b + 0 + 0) + e^{-bx - bc - d}(-b + 0 + 0))}{(e^{bx + bc + d} + e^{-bx - bc - d})^{2}})ace^{-bx - bc - d} - \frac{ace^{-bx - bc - d}(-b + 0 + 0)}{(e^{bx + bc + d} + e^{-bx - bc - d})}\\=&\frac{abe^{-bx - bc - d}e^{bx + bc + d}}{(e^{bx + bc + d} + e^{-bx - bc - d})^{2}} - \frac{abe^{{\left(bx + bc + d\right)}*{2}}}{(e^{bx + bc + d} + e^{-bx - bc - d})^{2}} + \frac{abe^{bx + bc + d}}{(e^{bx + bc + d} + e^{-bx - bc - d})} + \frac{abce^{bx + bc + d}e^{-bx - bc - d}}{(e^{bx + bc + d} + e^{-bx - bc - d})^{2}} - \frac{abce^{{\left(-bx - bc - d\right)}*{2}}}{(e^{bx + bc + d} + e^{-bx - bc - d})^{2}} + \frac{abce^{-bx - bc - d}}{(e^{bx + bc + d} + e^{-bx - bc - d})}\\\\ &\color{blue}{函数的第 2 阶导数:} \\&\frac{d\left( \frac{abe^{-bx - bc - d}e^{bx + bc + d}}{(e^{bx + bc + d} + e^{-bx - bc - d})^{2}} - \frac{abe^{{\left(bx + bc + d\right)}*{2}}}{(e^{bx + bc + d} + e^{-bx - bc - d})^{2}} + \frac{abe^{bx + bc + d}}{(e^{bx + bc + d} + e^{-bx - bc - d})} + \frac{abce^{bx + bc + d}e^{-bx - bc - d}}{(e^{bx + bc + d} + e^{-bx - bc - d})^{2}} - \frac{abce^{{\left(-bx - bc - d\right)}*{2}}}{(e^{bx + bc + d} + e^{-bx - bc - d})^{2}} + \frac{abce^{-bx - bc - d}}{(e^{bx + bc + d} + e^{-bx - bc - d})}\right)}{dx}\\=&(\frac{-2(e^{bx + bc + d}(b + 0 + 0) + e^{-bx - bc - d}(-b + 0 + 0))}{(e^{bx + bc + d} + e^{-bx - bc - d})^{3}})abe^{-bx - bc - d}e^{bx + bc + d} + \frac{abe^{-bx - bc - d}(-b + 0 + 0)e^{bx + bc + d}}{(e^{bx + bc + d} + e^{-bx - bc - d})^{2}} + \frac{abe^{-bx - bc - d}e^{bx + bc + d}(b + 0 + 0)}{(e^{bx + bc + d} + e^{-bx - bc - d})^{2}} - (\frac{-2(e^{bx + bc + d}(b + 0 + 0) + e^{-bx - bc - d}(-b + 0 + 0))}{(e^{bx + bc + d} + e^{-bx - bc - d})^{3}})abe^{{\left(bx + bc + d\right)}*{2}} - \frac{ab*2e^{bx + bc + d}e^{bx + bc + d}(b + 0 + 0)}{(e^{bx + bc + d} + e^{-bx - bc - d})^{2}} + (\frac{-(e^{bx + bc + d}(b + 0 + 0) + e^{-bx - bc - d}(-b + 0 + 0))}{(e^{bx + bc + d} + e^{-bx - bc - d})^{2}})abe^{bx + bc + d} + \frac{abe^{bx + bc + d}(b + 0 + 0)}{(e^{bx + bc + d} + e^{-bx - bc - d})} + (\frac{-2(e^{bx + bc + d}(b + 0 + 0) + e^{-bx - bc - d}(-b + 0 + 0))}{(e^{bx + bc + d} + e^{-bx - bc - d})^{3}})abce^{bx + bc + d}e^{-bx - bc - d} + \frac{abce^{bx + bc + d}(b + 0 + 0)e^{-bx - bc - d}}{(e^{bx + bc + d} + e^{-bx - bc - d})^{2}} + \frac{abce^{bx + bc + d}e^{-bx - bc - d}(-b + 0 + 0)}{(e^{bx + bc + d} + e^{-bx - bc - d})^{2}} - (\frac{-2(e^{bx + bc + d}(b + 0 + 0) + e^{-bx - bc - d}(-b + 0 + 0))}{(e^{bx + bc + d} + e^{-bx - bc - d})^{3}})abce^{{\left(-bx - bc - d\right)}*{2}} - \frac{abc*2e^{-bx - bc - d}e^{-bx - bc - d}(-b + 0 + 0)}{(e^{bx + bc + d} + e^{-bx - bc - d})^{2}} + (\frac{-(e^{bx + bc + d}(b + 0 + 0) + e^{-bx - bc - d}(-b + 0 + 0))}{(e^{bx + bc + d} + e^{-bx - bc - d})^{2}})abce^{-bx - bc - d} + \frac{abce^{-bx - bc - d}(-b + 0 + 0)}{(e^{bx + bc + d} + e^{-bx - bc - d})}\\=& - \frac{2ab^{2}e^{{\left(bx + bc + d\right)}*{2}}e^{-bx - bc - d}}{(e^{bx + bc + d} + e^{-bx - bc - d})^{3}} + \frac{2ab^{2}e^{{\left(-bx - bc - d\right)}*{2}}e^{bx + bc + d}}{(e^{bx + bc + d} + e^{-bx - bc - d})^{3}} - \frac{2ab^{2}e^{-bx - bc - d}e^{{\left(bx + bc + d\right)}*{2}}}{(e^{bx + bc + d} + e^{-bx - bc - d})^{3}} + \frac{ab^{2}e^{-bx - bc - d}e^{bx + bc + d}}{(e^{bx + bc + d} + e^{-bx - bc - d})^{2}} - \frac{3ab^{2}e^{{\left(bx + bc + d\right)}*{2}}}{(e^{bx + bc + d} + e^{-bx - bc - d})^{2}} + \frac{2ab^{2}e^{{\left(bx + bc + d\right)}*{3}}}{(e^{bx + bc + d} + e^{-bx - bc - d})^{3}} + \frac{ab^{2}e^{bx + bc + d}}{(e^{bx + bc + d} + e^{-bx - bc - d})} - \frac{2ab^{2}ce^{{\left(bx + bc + d\right)}*{2}}e^{-bx - bc - d}}{(e^{bx + bc + d} + e^{-bx - bc - d})^{3}} + \frac{2ab^{2}ce^{{\left(-bx - bc - d\right)}*{2}}e^{bx + bc + d}}{(e^{bx + bc + d} + e^{-bx - bc - d})^{3}} + \frac{2ab^{2}ce^{bx + bc + d}e^{{\left(-bx - bc - d\right)}*{2}}}{(e^{bx + bc + d} + e^{-bx - bc - d})^{3}} - \frac{ab^{2}ce^{bx + bc + d}e^{-bx - bc - d}}{(e^{bx + bc + d} + e^{-bx - bc - d})^{2}} + \frac{3ab^{2}ce^{{\left(-bx - bc - d\right)}*{2}}}{(e^{bx + bc + d} + e^{-bx - bc - d})^{2}} - \frac{2ab^{2}ce^{{\left(-bx - bc - d\right)}*{3}}}{(e^{bx + bc + d} + e^{-bx - bc - d})^{3}} - \frac{ab^{2}ce^{-bx - bc - d}}{(e^{bx + bc + d} + e^{-bx - bc - d})}\\\\ &\color{blue}{函数的第 3 阶导数:} \\&\frac{d\left( - \frac{2ab^{2}e^{{\left(bx + bc + d\right)}*{2}}e^{-bx - bc - d}}{(e^{bx + bc + d} + e^{-bx - bc - d})^{3}} + \frac{2ab^{2}e^{{\left(-bx - bc - d\right)}*{2}}e^{bx + bc + d}}{(e^{bx + bc + d} + e^{-bx - bc - d})^{3}} - \frac{2ab^{2}e^{-bx - bc - d}e^{{\left(bx + bc + d\right)}*{2}}}{(e^{bx + bc + d} + e^{-bx - bc - d})^{3}} + \frac{ab^{2}e^{-bx - bc - d}e^{bx + bc + d}}{(e^{bx + bc + d} + e^{-bx - bc - d})^{2}} - \frac{3ab^{2}e^{{\left(bx + bc + d\right)}*{2}}}{(e^{bx + bc + d} + e^{-bx - bc - d})^{2}} + \frac{2ab^{2}e^{{\left(bx + bc + d\right)}*{3}}}{(e^{bx + bc + d} + e^{-bx - bc - d})^{3}} + \frac{ab^{2}e^{bx + bc + d}}{(e^{bx + bc + d} + e^{-bx - bc - d})} - \frac{2ab^{2}ce^{{\left(bx + bc + d\right)}*{2}}e^{-bx - bc - d}}{(e^{bx + bc + d} + e^{-bx - bc - d})^{3}} + \frac{2ab^{2}ce^{{\left(-bx - bc - d\right)}*{2}}e^{bx + bc + d}}{(e^{bx + bc + d} + e^{-bx - bc - d})^{3}} + \frac{2ab^{2}ce^{bx + bc + d}e^{{\left(-bx - bc - d\right)}*{2}}}{(e^{bx + bc + d} + e^{-bx - bc - d})^{3}} - \frac{ab^{2}ce^{bx + bc + d}e^{-bx - bc - d}}{(e^{bx + bc + d} + e^{-bx - bc - d})^{2}} + \frac{3ab^{2}ce^{{\left(-bx - bc - d\right)}*{2}}}{(e^{bx + bc + d} + e^{-bx - bc - d})^{2}} - \frac{2ab^{2}ce^{{\left(-bx - bc - d\right)}*{3}}}{(e^{bx + bc + d} + e^{-bx - bc - d})^{3}} - \frac{ab^{2}ce^{-bx - bc - d}}{(e^{bx + bc + d} + e^{-bx - bc - d})}\right)}{dx}\\=& - 2(\frac{-3(e^{bx + bc + d}(b + 0 + 0) + e^{-bx - bc - d}(-b + 0 + 0))}{(e^{bx + bc + d} + e^{-bx - bc - d})^{4}})ab^{2}e^{{\left(bx + bc + d\right)}*{2}}e^{-bx - bc - d} - \frac{2ab^{2}*2e^{bx + bc + d}e^{bx + bc + d}(b + 0 + 0)e^{-bx - bc - d}}{(e^{bx + bc + d} + e^{-bx - bc - d})^{3}} - \frac{2ab^{2}e^{{\left(bx + bc + d\right)}*{2}}e^{-bx - bc - d}(-b + 0 + 0)}{(e^{bx + bc + d} + e^{-bx - bc - d})^{3}} + 2(\frac{-3(e^{bx + bc + d}(b + 0 + 0) + e^{-bx - bc - d}(-b + 0 + 0))}{(e^{bx + bc + d} + e^{-bx - bc - d})^{4}})ab^{2}e^{{\left(-bx - bc - d\right)}*{2}}e^{bx + bc + d} + \frac{2ab^{2}*2e^{-bx - bc - d}e^{-bx - bc - d}(-b + 0 + 0)e^{bx + bc + d}}{(e^{bx + bc + d} + e^{-bx - bc - d})^{3}} + \frac{2ab^{2}e^{{\left(-bx - bc - d\right)}*{2}}e^{bx + bc + d}(b + 0 + 0)}{(e^{bx + bc + d} + e^{-bx - bc - d})^{3}} - 2(\frac{-3(e^{bx + bc + d}(b + 0 + 0) + e^{-bx - bc - d}(-b + 0 + 0))}{(e^{bx + bc + d} + e^{-bx - bc - d})^{4}})ab^{2}e^{-bx - bc - d}e^{{\left(bx + bc + d\right)}*{2}} - \frac{2ab^{2}e^{-bx - bc - d}(-b + 0 + 0)e^{{\left(bx + bc + d\right)}*{2}}}{(e^{bx + bc + d} + e^{-bx - bc - d})^{3}} - \frac{2ab^{2}e^{-bx - bc - d}*2e^{bx + bc + d}e^{bx + bc + d}(b + 0 + 0)}{(e^{bx + bc + d} + e^{-bx - bc - d})^{3}} + (\frac{-2(e^{bx + bc + d}(b + 0 + 0) + e^{-bx - bc - d}(-b + 0 + 0))}{(e^{bx + bc + d} + e^{-bx - bc - d})^{3}})ab^{2}e^{-bx - bc - d}e^{bx + bc + d} + \frac{ab^{2}e^{-bx - bc - d}(-b + 0 + 0)e^{bx + bc + d}}{(e^{bx + bc + d} + e^{-bx - bc - d})^{2}} + \frac{ab^{2}e^{-bx - bc - d}e^{bx + bc + d}(b + 0 + 0)}{(e^{bx + bc + d} + e^{-bx - bc - d})^{2}} - 3(\frac{-2(e^{bx + bc + d}(b + 0 + 0) + e^{-bx - bc - d}(-b + 0 + 0))}{(e^{bx + bc + d} + e^{-bx - bc - d})^{3}})ab^{2}e^{{\left(bx + bc + d\right)}*{2}} - \frac{3ab^{2}*2e^{bx + bc + d}e^{bx + bc + d}(b + 0 + 0)}{(e^{bx + bc + d} + e^{-bx - bc - d})^{2}} + 2(\frac{-3(e^{bx + bc + d}(b + 0 + 0) + e^{-bx - bc - d}(-b + 0 + 0))}{(e^{bx + bc + d} + e^{-bx - bc - d})^{4}})ab^{2}e^{{\left(bx + bc + d\right)}*{3}} + \frac{2ab^{2}*3e^{{\left(bx + bc + d\right)}*{2}}e^{bx + bc + d}(b + 0 + 0)}{(e^{bx + bc + d} + e^{-bx - bc - d})^{3}} + (\frac{-(e^{bx + bc + d}(b + 0 + 0) + e^{-bx - bc - d}(-b + 0 + 0))}{(e^{bx + bc + d} + e^{-bx - bc - d})^{2}})ab^{2}e^{bx + bc + d} + \frac{ab^{2}e^{bx + bc + d}(b + 0 + 0)}{(e^{bx + bc + d} + e^{-bx - bc - d})} - 2(\frac{-3(e^{bx + bc + d}(b + 0 + 0) + e^{-bx - bc - d}(-b + 0 + 0))}{(e^{bx + bc + d} + e^{-bx - bc - d})^{4}})ab^{2}ce^{{\left(bx + bc + d\right)}*{2}}e^{-bx - bc - d} - \frac{2ab^{2}c*2e^{bx + bc + d}e^{bx + bc + d}(b + 0 + 0)e^{-bx - bc - d}}{(e^{bx + bc + d} + e^{-bx - bc - d})^{3}} - \frac{2ab^{2}ce^{{\left(bx + bc + d\right)}*{2}}e^{-bx - bc - d}(-b + 0 + 0)}{(e^{bx + bc + d} + e^{-bx - bc - d})^{3}} + 2(\frac{-3(e^{bx + bc + d}(b + 0 + 0) + e^{-bx - bc - d}(-b + 0 + 0))}{(e^{bx + bc + d} + e^{-bx - bc - d})^{4}})ab^{2}ce^{{\left(-bx - bc - d\right)}*{2}}e^{bx + bc + d} + \frac{2ab^{2}c*2e^{-bx - bc - d}e^{-bx - bc - d}(-b + 0 + 0)e^{bx + bc + d}}{(e^{bx + bc + d} + e^{-bx - bc - d})^{3}} + \frac{2ab^{2}ce^{{\left(-bx - bc - d\right)}*{2}}e^{bx + bc + d}(b + 0 + 0)}{(e^{bx + bc + d} + e^{-bx - bc - d})^{3}} + 2(\frac{-3(e^{bx + bc + d}(b + 0 + 0) + e^{-bx - bc - d}(-b + 0 + 0))}{(e^{bx + bc + d} + e^{-bx - bc - d})^{4}})ab^{2}ce^{bx + bc + d}e^{{\left(-bx - bc - d\right)}*{2}} + \frac{2ab^{2}ce^{bx + bc + d}(b + 0 + 0)e^{{\left(-bx - bc - d\right)}*{2}}}{(e^{bx + bc + d} + e^{-bx - bc - d})^{3}} + \frac{2ab^{2}ce^{bx + bc + d}*2e^{-bx - bc - d}e^{-bx - bc - d}(-b + 0 + 0)}{(e^{bx + bc + d} + e^{-bx - bc - d})^{3}} - (\frac{-2(e^{bx + bc + d}(b + 0 + 0) + e^{-bx - bc - d}(-b + 0 + 0))}{(e^{bx + bc + d} + e^{-bx - bc - d})^{3}})ab^{2}ce^{bx + bc + d}e^{-bx - bc - d} - \frac{ab^{2}ce^{bx + bc + d}(b + 0 + 0)e^{-bx - bc - d}}{(e^{bx + bc + d} + e^{-bx - bc - d})^{2}} - \frac{ab^{2}ce^{bx + bc + d}e^{-bx - bc - d}(-b + 0 + 0)}{(e^{bx + bc + d} + e^{-bx - bc - d})^{2}} + 3(\frac{-2(e^{bx + bc + d}(b + 0 + 0) + e^{-bx - bc - d}(-b + 0 + 0))}{(e^{bx + bc + d} + e^{-bx - bc - d})^{3}})ab^{2}ce^{{\left(-bx - bc - d\right)}*{2}} + \frac{3ab^{2}c*2e^{-bx - bc - d}e^{-bx - bc - d}(-b + 0 + 0)}{(e^{bx + bc + d} + e^{-bx - bc - d})^{2}} - 2(\frac{-3(e^{bx + bc + d}(b + 0 + 0) + e^{-bx - bc - d}(-b + 0 + 0))}{(e^{bx + bc + d} + e^{-bx - bc - d})^{4}})ab^{2}ce^{{\left(-bx - bc - d\right)}*{3}} - \frac{2ab^{2}c*3e^{{\left(-bx - bc - d\right)}*{2}}e^{-bx - bc - d}(-b + 0 + 0)}{(e^{bx + bc + d} + e^{-bx - bc - d})^{3}} - (\frac{-(e^{bx + bc + d}(b + 0 + 0) + e^{-bx - bc - d}(-b + 0 + 0))}{(e^{bx + bc + d} + e^{-bx - bc - d})^{2}})ab^{2}ce^{-bx - bc - d} - \frac{ab^{2}ce^{-bx - bc - d}(-b + 0 + 0)}{(e^{bx + bc + d} + e^{-bx - bc - d})}\\=&\frac{12ab^{3}e^{{\left(bx + bc + d\right)}*{3}}e^{-bx - bc - d}}{(e^{bx + bc + d} + e^{-bx - bc - d})^{4}} - \frac{12ab^{3}e^{{\left(-bx - bc - d\right)}*{2}}e^{{\left(bx + bc + d\right)}*{2}}}{(e^{bx + bc + d} + e^{-bx - bc - d})^{4}} - \frac{8ab^{3}e^{{\left(bx + bc + d\right)}*{2}}e^{-bx - bc - d}}{(e^{bx + bc + d} + e^{-bx - bc - d})^{3}} - \frac{6ab^{3}e^{{\left(bx + bc + d\right)}*{2}}e^{{\left(-bx - bc - d\right)}*{2}}}{(e^{bx + bc + d} + e^{-bx - bc - d})^{4}} + \frac{6ab^{3}e^{{\left(-bx - bc - d\right)}*{3}}e^{bx + bc + d}}{(e^{bx + bc + d} + e^{-bx - bc - d})^{4}} - \frac{4ab^{3}e^{-bx - bc - d}e^{{\left(bx + bc + d\right)}*{2}}}{(e^{bx + bc + d} + e^{-bx - bc - d})^{3}} + \frac{6ab^{3}e^{-bx - bc - d}e^{{\left(bx + bc + d\right)}*{3}}}{(e^{bx + bc + d} + e^{-bx - bc - d})^{4}} + \frac{ab^{3}e^{-bx - bc - d}e^{bx + bc + d}}{(e^{bx + bc + d} + e^{-bx - bc - d})^{2}} - \frac{6ab^{3}e^{{\left(bx + bc + d\right)}*{4}}}{(e^{bx + bc + d} + e^{-bx - bc - d})^{4}} + \frac{12ab^{3}e^{{\left(bx + bc + d\right)}*{3}}}{(e^{bx + bc + d} + e^{-bx - bc - d})^{3}} - \frac{7ab^{3}e^{{\left(bx + bc + d\right)}*{2}}}{(e^{bx + bc + d} + e^{-bx - bc - d})^{2}} + \frac{ab^{3}e^{bx + bc + d}}{(e^{bx + bc + d} + e^{-bx - bc - d})} + \frac{6ab^{3}ce^{{\left(bx + bc + d\right)}*{3}}e^{-bx - bc - d}}{(e^{bx + bc + d} + e^{-bx - bc - d})^{4}} - \frac{6ab^{3}ce^{{\left(-bx - bc - d\right)}*{2}}e^{{\left(bx + bc + d\right)}*{2}}}{(e^{bx + bc + d} + e^{-bx - bc - d})^{4}} - \frac{12ab^{3}ce^{{\left(bx + bc + d\right)}*{2}}e^{{\left(-bx - bc - d\right)}*{2}}}{(e^{bx + bc + d} + e^{-bx - bc - d})^{4}} + \frac{12ab^{3}ce^{{\left(-bx - bc - d\right)}*{3}}e^{bx + bc + d}}{(e^{bx + bc + d} + e^{-bx - bc - d})^{4}} - \frac{8ab^{3}ce^{{\left(-bx - bc - d\right)}*{2}}e^{bx + bc + d}}{(e^{bx + bc + d} + e^{-bx - bc - d})^{3}} - \frac{4ab^{3}ce^{bx + bc + d}e^{{\left(-bx - bc - d\right)}*{2}}}{(e^{bx + bc + d} + e^{-bx - bc - d})^{3}} + \frac{6ab^{3}ce^{bx + bc + d}e^{{\left(-bx - bc - d\right)}*{3}}}{(e^{bx + bc + d} + e^{-bx - bc - d})^{4}} + \frac{ab^{3}ce^{bx + bc + d}e^{-bx - bc - d}}{(e^{bx + bc + d} + e^{-bx - bc - d})^{2}} + \frac{12ab^{3}ce^{{\left(-bx - bc - d\right)}*{3}}}{(e^{bx + bc + d} + e^{-bx - bc - d})^{3}} - \frac{6ab^{3}ce^{{\left(-bx - bc - d\right)}*{4}}}{(e^{bx + bc + d} + e^{-bx - bc - d})^{4}} - \frac{7ab^{3}ce^{{\left(-bx - bc - d\right)}*{2}}}{(e^{bx + bc + d} + e^{-bx - bc - d})^{2}} + \frac{ab^{3}ce^{-bx - bc - d}}{(e^{bx + bc + d} + e^{-bx - bc - d})}\\\\ &\color{blue}{函数的第 4 阶导数:} \\&\frac{d\left( \frac{12ab^{3}e^{{\left(bx + bc + d\right)}*{3}}e^{-bx - bc - d}}{(e^{bx + bc + d} + e^{-bx - bc - d})^{4}} - \frac{12ab^{3}e^{{\left(-bx - bc - d\right)}*{2}}e^{{\left(bx + bc + d\right)}*{2}}}{(e^{bx + bc + d} + e^{-bx - bc - d})^{4}} - \frac{8ab^{3}e^{{\left(bx + bc + d\right)}*{2}}e^{-bx - bc - d}}{(e^{bx + bc + d} + e^{-bx - bc - d})^{3}} - \frac{6ab^{3}e^{{\left(bx + bc + d\right)}*{2}}e^{{\left(-bx - bc - d\right)}*{2}}}{(e^{bx + bc + d} + e^{-bx - bc - d})^{4}} + \frac{6ab^{3}e^{{\left(-bx - bc - d\right)}*{3}}e^{bx + bc + d}}{(e^{bx + bc + d} + e^{-bx - bc - d})^{4}} - \frac{4ab^{3}e^{-bx - bc - d}e^{{\left(bx + bc + d\right)}*{2}}}{(e^{bx + bc + d} + e^{-bx - bc - d})^{3}} + \frac{6ab^{3}e^{-bx - bc - d}e^{{\left(bx + bc + d\right)}*{3}}}{(e^{bx + bc + d} + e^{-bx - bc - d})^{4}} + \frac{ab^{3}e^{-bx - bc - d}e^{bx + bc + d}}{(e^{bx + bc + d} + e^{-bx - bc - d})^{2}} - \frac{6ab^{3}e^{{\left(bx + bc + d\right)}*{4}}}{(e^{bx + bc + d} + e^{-bx - bc - d})^{4}} + \frac{12ab^{3}e^{{\left(bx + bc + d\right)}*{3}}}{(e^{bx + bc + d} + e^{-bx - bc - d})^{3}} - \frac{7ab^{3}e^{{\left(bx + bc + d\right)}*{2}}}{(e^{bx + bc + d} + e^{-bx - bc - d})^{2}} + \frac{ab^{3}e^{bx + bc + d}}{(e^{bx + bc + d} + e^{-bx - bc - d})} + \frac{6ab^{3}ce^{{\left(bx + bc + d\right)}*{3}}e^{-bx - bc - d}}{(e^{bx + bc + d} + e^{-bx - bc - d})^{4}} - \frac{6ab^{3}ce^{{\left(-bx - bc - d\right)}*{2}}e^{{\left(bx + bc + d\right)}*{2}}}{(e^{bx + bc + d} + e^{-bx - bc - d})^{4}} - \frac{12ab^{3}ce^{{\left(bx + bc + d\right)}*{2}}e^{{\left(-bx - bc - d\right)}*{2}}}{(e^{bx + bc + d} + e^{-bx - bc - d})^{4}} + \frac{12ab^{3}ce^{{\left(-bx - bc - d\right)}*{3}}e^{bx + bc + d}}{(e^{bx + bc + d} + e^{-bx - bc - d})^{4}} - \frac{8ab^{3}ce^{{\left(-bx - bc - d\right)}*{2}}e^{bx + bc + d}}{(e^{bx + bc + d} + e^{-bx - bc - d})^{3}} - \frac{4ab^{3}ce^{bx + bc + d}e^{{\left(-bx - bc - d\right)}*{2}}}{(e^{bx + bc + d} + e^{-bx - bc - d})^{3}} + \frac{6ab^{3}ce^{bx + bc + d}e^{{\left(-bx - bc - d\right)}*{3}}}{(e^{bx + bc + d} + e^{-bx - bc - d})^{4}} + \frac{ab^{3}ce^{bx + bc + d}e^{-bx - bc - d}}{(e^{bx + bc + d} + e^{-bx - bc - d})^{2}} + \frac{12ab^{3}ce^{{\left(-bx - bc - d\right)}*{3}}}{(e^{bx + bc + d} + e^{-bx - bc - d})^{3}} - \frac{6ab^{3}ce^{{\left(-bx - bc - d\right)}*{4}}}{(e^{bx + bc + d} + e^{-bx - bc - d})^{4}} - \frac{7ab^{3}ce^{{\left(-bx - bc - d\right)}*{2}}}{(e^{bx + bc + d} + e^{-bx - bc - d})^{2}} + \frac{ab^{3}ce^{-bx - bc - d}}{(e^{bx + bc + d} + e^{-bx - bc - d})}\right)}{dx}\\=&12(\frac{-4(e^{bx + bc + d}(b + 0 + 0) + e^{-bx - bc - d}(-b + 0 + 0))}{(e^{bx + bc + d} + e^{-bx - bc - d})^{5}})ab^{3}e^{{\left(bx + bc + d\right)}*{3}}e^{-bx - bc - d} + \frac{12ab^{3}*3e^{{\left(bx + bc + d\right)}*{2}}e^{bx + bc + d}(b + 0 + 0)e^{-bx - bc - d}}{(e^{bx + bc + d} + e^{-bx - bc - d})^{4}} + \frac{12ab^{3}e^{{\left(bx + bc + d\right)}*{3}}e^{-bx - bc - d}(-b + 0 + 0)}{(e^{bx + bc + d} + e^{-bx - bc - d})^{4}} - 12(\frac{-4(e^{bx + bc + d}(b + 0 + 0) + e^{-bx - bc - d}(-b + 0 + 0))}{(e^{bx + bc + d} + e^{-bx - bc - d})^{5}})ab^{3}e^{{\left(-bx - bc - d\right)}*{2}}e^{{\left(bx + bc + d\right)}*{2}} - \frac{12ab^{3}*2e^{-bx - bc - d}e^{-bx - bc - d}(-b + 0 + 0)e^{{\left(bx + bc + d\right)}*{2}}}{(e^{bx + bc + d} + e^{-bx - bc - d})^{4}} - \frac{12ab^{3}e^{{\left(-bx - bc - d\right)}*{2}}*2e^{bx + bc + d}e^{bx + bc + d}(b + 0 + 0)}{(e^{bx + bc + d} + e^{-bx - bc - d})^{4}} - 8(\frac{-3(e^{bx + bc + d}(b + 0 + 0) + e^{-bx - bc - d}(-b + 0 + 0))}{(e^{bx + bc + d} + e^{-bx - bc - d})^{4}})ab^{3}e^{{\left(bx + bc + d\right)}*{2}}e^{-bx - bc - d} - \frac{8ab^{3}*2e^{bx + bc + d}e^{bx + bc + d}(b + 0 + 0)e^{-bx - bc - d}}{(e^{bx + bc + d} + e^{-bx - bc - d})^{3}} - \frac{8ab^{3}e^{{\left(bx + bc + d\right)}*{2}}e^{-bx - bc - d}(-b + 0 + 0)}{(e^{bx + bc + d} + e^{-bx - bc - d})^{3}} - 6(\frac{-4(e^{bx + bc + d}(b + 0 + 0) + e^{-bx - bc - d}(-b + 0 + 0))}{(e^{bx + bc + d} + e^{-bx - bc - d})^{5}})ab^{3}e^{{\left(bx + bc + d\right)}*{2}}e^{{\left(-bx - bc - d\right)}*{2}} - \frac{6ab^{3}*2e^{bx + bc + d}e^{bx + bc + d}(b + 0 + 0)e^{{\left(-bx - bc - d\right)}*{2}}}{(e^{bx + bc + d} + e^{-bx - bc - d})^{4}} - \frac{6ab^{3}e^{{\left(bx + bc + d\right)}*{2}}*2e^{-bx - bc - d}e^{-bx - bc - d}(-b + 0 + 0)}{(e^{bx + bc + d} + e^{-bx - bc - d})^{4}} + 6(\frac{-4(e^{bx + bc + d}(b + 0 + 0) + e^{-bx - bc - d}(-b + 0 + 0))}{(e^{bx + bc + d} + e^{-bx - bc - d})^{5}})ab^{3}e^{{\left(-bx - bc - d\right)}*{3}}e^{bx + bc + d} + \frac{6ab^{3}*3e^{{\left(-bx - bc - d\right)}*{2}}e^{-bx - bc - d}(-b + 0 + 0)e^{bx + bc + d}}{(e^{bx + bc + d} + e^{-bx - bc - d})^{4}} + \frac{6ab^{3}e^{{\left(-bx - bc - d\right)}*{3}}e^{bx + bc + d}(b + 0 + 0)}{(e^{bx + bc + d} + e^{-bx - bc - d})^{4}} - 4(\frac{-3(e^{bx + bc + d}(b + 0 + 0) + e^{-bx - bc - d}(-b + 0 + 0))}{(e^{bx + bc + d} + e^{-bx - bc - d})^{4}})ab^{3}e^{-bx - bc - d}e^{{\left(bx + bc + d\right)}*{2}} - \frac{4ab^{3}e^{-bx - bc - d}(-b + 0 + 0)e^{{\left(bx + bc + d\right)}*{2}}}{(e^{bx + bc + d} + e^{-bx - bc - d})^{3}} - \frac{4ab^{3}e^{-bx - bc - d}*2e^{bx + bc + d}e^{bx + bc + d}(b + 0 + 0)}{(e^{bx + bc + d} + e^{-bx - bc - d})^{3}} + 6(\frac{-4(e^{bx + bc + d}(b + 0 + 0) + e^{-bx - bc - d}(-b + 0 + 0))}{(e^{bx + bc + d} + e^{-bx - bc - d})^{5}})ab^{3}e^{-bx - bc - d}e^{{\left(bx + bc + d\right)}*{3}} + \frac{6ab^{3}e^{-bx - bc - d}(-b + 0 + 0)e^{{\left(bx + bc + d\right)}*{3}}}{(e^{bx + bc + d} + e^{-bx - bc - d})^{4}} + \frac{6ab^{3}e^{-bx - bc - d}*3e^{{\left(bx + bc + d\right)}*{2}}e^{bx + bc + d}(b + 0 + 0)}{(e^{bx + bc + d} + e^{-bx - bc - d})^{4}} + (\frac{-2(e^{bx + bc + d}(b + 0 + 0) + e^{-bx - bc - d}(-b + 0 + 0))}{(e^{bx + bc + d} + e^{-bx - bc - d})^{3}})ab^{3}e^{-bx - bc - d}e^{bx + bc + d} + \frac{ab^{3}e^{-bx - bc - d}(-b + 0 + 0)e^{bx + bc + d}}{(e^{bx + bc + d} + e^{-bx - bc - d})^{2}} + \frac{ab^{3}e^{-bx - bc - d}e^{bx + bc + d}(b + 0 + 0)}{(e^{bx + bc + d} + e^{-bx - bc - d})^{2}} - 6(\frac{-4(e^{bx + bc + d}(b + 0 + 0) + e^{-bx - bc - d}(-b + 0 + 0))}{(e^{bx + bc + d} + e^{-bx - bc - d})^{5}})ab^{3}e^{{\left(bx + bc + d\right)}*{4}} - \frac{6ab^{3}*4e^{{\left(bx + bc + d\right)}*{3}}e^{bx + bc + d}(b + 0 + 0)}{(e^{bx + bc + d} + e^{-bx - bc - d})^{4}} + 12(\frac{-3(e^{bx + bc + d}(b + 0 + 0) + e^{-bx - bc - d}(-b + 0 + 0))}{(e^{bx + bc + d} + e^{-bx - bc - d})^{4}})ab^{3}e^{{\left(bx + bc + d\right)}*{3}} + \frac{12ab^{3}*3e^{{\left(bx + bc + d\right)}*{2}}e^{bx + bc + d}(b + 0 + 0)}{(e^{bx + bc + d} + e^{-bx - bc - d})^{3}} - 7(\frac{-2(e^{bx + bc + d}(b + 0 + 0) + e^{-bx - bc - d}(-b + 0 + 0))}{(e^{bx + bc + d} + e^{-bx - bc - d})^{3}})ab^{3}e^{{\left(bx + bc + d\right)}*{2}} - \frac{7ab^{3}*2e^{bx + bc + d}e^{bx + bc + d}(b + 0 + 0)}{(e^{bx + bc + d} + e^{-bx - bc - d})^{2}} + (\frac{-(e^{bx + bc + d}(b + 0 + 0) + e^{-bx - bc - d}(-b + 0 + 0))}{(e^{bx + bc + d} + e^{-bx - bc - d})^{2}})ab^{3}e^{bx + bc + d} + \frac{ab^{3}e^{bx + bc + d}(b + 0 + 0)}{(e^{bx + bc + d} + e^{-bx - bc - d})} + 6(\frac{-4(e^{bx + bc + d}(b + 0 + 0) + e^{-bx - bc - d}(-b + 0 + 0))}{(e^{bx + bc + d} + e^{-bx - bc - d})^{5}})ab^{3}ce^{{\left(bx + bc + d\right)}*{3}}e^{-bx - bc - d} + \frac{6ab^{3}c*3e^{{\left(bx + bc + d\right)}*{2}}e^{bx + bc + d}(b + 0 + 0)e^{-bx - bc - d}}{(e^{bx + bc + d} + e^{-bx - bc - d})^{4}} + \frac{6ab^{3}ce^{{\left(bx + bc + d\right)}*{3}}e^{-bx - bc - d}(-b + 0 + 0)}{(e^{bx + bc + d} + e^{-bx - bc - d})^{4}} - 6(\frac{-4(e^{bx + bc + d}(b + 0 + 0) + e^{-bx - bc - d}(-b + 0 + 0))}{(e^{bx + bc + d} + e^{-bx - bc - d})^{5}})ab^{3}ce^{{\left(-bx - bc - d\right)}*{2}}e^{{\left(bx + bc + d\right)}*{2}} - \frac{6ab^{3}c*2e^{-bx - bc - d}e^{-bx - bc - d}(-b + 0 + 0)e^{{\left(bx + bc + d\right)}*{2}}}{(e^{bx + bc + d} + e^{-bx - bc - d})^{4}} - \frac{6ab^{3}ce^{{\left(-bx - bc - d\right)}*{2}}*2e^{bx + bc + d}e^{bx + bc + d}(b + 0 + 0)}{(e^{bx + bc + d} + e^{-bx - bc - d})^{4}} - 12(\frac{-4(e^{bx + bc + d}(b + 0 + 0) + e^{-bx - bc - d}(-b + 0 + 0))}{(e^{bx + bc + d} + e^{-bx - bc - d})^{5}})ab^{3}ce^{{\left(bx + bc + d\right)}*{2}}e^{{\left(-bx - bc - d\right)}*{2}} - \frac{12ab^{3}c*2e^{bx + bc + d}e^{bx + bc + d}(b + 0 + 0)e^{{\left(-bx - bc - d\right)}*{2}}}{(e^{bx + bc + d} + e^{-bx - bc - d})^{4}} - \frac{12ab^{3}ce^{{\left(bx + bc + d\right)}*{2}}*2e^{-bx - bc - d}e^{-bx - bc - d}(-b + 0 + 0)}{(e^{bx + bc + d} + e^{-bx - bc - d})^{4}} + 12(\frac{-4(e^{bx + bc + d}(b + 0 + 0) + e^{-bx - bc - d}(-b + 0 + 0))}{(e^{bx + bc + d} + e^{-bx - bc - d})^{5}})ab^{3}ce^{{\left(-bx - bc - d\right)}*{3}}e^{bx + bc + d} + \frac{12ab^{3}c*3e^{{\left(-bx - bc - d\right)}*{2}}e^{-bx - bc - d}(-b + 0 + 0)e^{bx + bc + d}}{(e^{bx + bc + d} + e^{-bx - bc - d})^{4}} + \frac{12ab^{3}ce^{{\left(-bx - bc - d\right)}*{3}}e^{bx + bc + d}(b + 0 + 0)}{(e^{bx + bc + d} + e^{-bx - bc - d})^{4}} - 8(\frac{-3(e^{bx + bc + d}(b + 0 + 0) + e^{-bx - bc - d}(-b + 0 + 0))}{(e^{bx + bc + d} + e^{-bx - bc - d})^{4}})ab^{3}ce^{{\left(-bx - bc - d\right)}*{2}}e^{bx + bc + d} - \frac{8ab^{3}c*2e^{-bx - bc - d}e^{-bx - bc - d}(-b + 0 + 0)e^{bx + bc + d}}{(e^{bx + bc + d} + e^{-bx - bc - d})^{3}} - \frac{8ab^{3}ce^{{\left(-bx - bc - d\right)}*{2}}e^{bx + bc + d}(b + 0 + 0)}{(e^{bx + bc + d} + e^{-bx - bc - d})^{3}} - 4(\frac{-3(e^{bx + bc + d}(b + 0 + 0) + e^{-bx - bc - d}(-b + 0 + 0))}{(e^{bx + bc + d} + e^{-bx - bc - d})^{4}})ab^{3}ce^{bx + bc + d}e^{{\left(-bx - bc - d\right)}*{2}} - \frac{4ab^{3}ce^{bx + bc + d}(b + 0 + 0)e^{{\left(-bx - bc - d\right)}*{2}}}{(e^{bx + bc + d} + e^{-bx - bc - d})^{3}} - \frac{4ab^{3}ce^{bx + bc + d}*2e^{-bx - bc - d}e^{-bx - bc - d}(-b + 0 + 0)}{(e^{bx + bc + d} + e^{-bx - bc - d})^{3}} + 6(\frac{-4(e^{bx + bc + d}(b + 0 + 0) + e^{-bx - bc - d}(-b + 0 + 0))}{(e^{bx + bc + d} + e^{-bx - bc - d})^{5}})ab^{3}ce^{bx + bc + d}e^{{\left(-bx - bc - d\right)}*{3}} + \frac{6ab^{3}ce^{bx + bc + d}(b + 0 + 0)e^{{\left(-bx - bc - d\right)}*{3}}}{(e^{bx + bc + d} + e^{-bx - bc - d})^{4}} + \frac{6ab^{3}ce^{bx + bc + d}*3e^{{\left(-bx - bc - d\right)}*{2}}e^{-bx - bc - d}(-b + 0 + 0)}{(e^{bx + bc + d} + e^{-bx - bc - d})^{4}} + (\frac{-2(e^{bx + bc + d}(b + 0 + 0) + e^{-bx - bc - d}(-b + 0 + 0))}{(e^{bx + bc + d} + e^{-bx - bc - d})^{3}})ab^{3}ce^{bx + bc + d}e^{-bx - bc - d} + \frac{ab^{3}ce^{bx + bc + d}(b + 0 + 0)e^{-bx - bc - d}}{(e^{bx + bc + d} + e^{-bx - bc - d})^{2}} + \frac{ab^{3}ce^{bx + bc + d}e^{-bx - bc - d}(-b + 0 + 0)}{(e^{bx + bc + d} + e^{-bx - bc - d})^{2}} + 12(\frac{-3(e^{bx + bc + d}(b + 0 + 0) + e^{-bx - bc - d}(-b + 0 + 0))}{(e^{bx + bc + d} + e^{-bx - bc - d})^{4}})ab^{3}ce^{{\left(-bx - bc - d\right)}*{3}} + \frac{12ab^{3}c*3e^{{\left(-bx - bc - d\right)}*{2}}e^{-bx - bc - d}(-b + 0 + 0)}{(e^{bx + bc + d} + e^{-bx - bc - d})^{3}} - 6(\frac{-4(e^{bx + bc + d}(b + 0 + 0) + e^{-bx - bc - d}(-b + 0 + 0))}{(e^{bx + bc + d} + e^{-bx - bc - d})^{5}})ab^{3}ce^{{\left(-bx - bc - d\right)}*{4}} - \frac{6ab^{3}c*4e^{{\left(-bx - bc - d\right)}*{3}}e^{-bx - bc - d}(-b + 0 + 0)}{(e^{bx + bc + d} + e^{-bx - bc - d})^{4}} - 7(\frac{-2(e^{bx + bc + d}(b + 0 + 0) + e^{-bx - bc - d}(-b + 0 + 0))}{(e^{bx + bc + d} + e^{-bx - bc - d})^{3}})ab^{3}ce^{{\left(-bx - bc - d\right)}*{2}} - \frac{7ab^{3}c*2e^{-bx - bc - d}e^{-bx - bc - d}(-b + 0 + 0)}{(e^{bx + bc + d} + e^{-bx - bc - d})^{2}} + (\frac{-(e^{bx + bc + d}(b + 0 + 0) + e^{-bx - bc - d}(-b + 0 + 0))}{(e^{bx + bc + d} + e^{-bx - bc - d})^{2}})ab^{3}ce^{-bx - bc - d} + \frac{ab^{3}ce^{-bx - bc - d}(-b + 0 + 0)}{(e^{bx + bc + d} + e^{-bx - bc - d})}\\=&\frac{-72ab^{4}e^{{\left(bx + bc + d\right)}*{4}}e^{-bx - bc - d}}{(e^{bx + bc + d} + e^{-bx - bc - d})^{5}} + \frac{72ab^{4}e^{{\left(-bx - bc - d\right)}*{2}}e^{{\left(bx + bc + d\right)}*{3}}}{(e^{bx + bc + d} + e^{-bx - bc - d})^{5}} + \frac{78ab^{4}e^{{\left(bx + bc + d\right)}*{3}}e^{-bx - bc - d}}{(e^{bx + bc + d} + e^{-bx - bc - d})^{4}} + \frac{72ab^{4}e^{{\left(bx + bc + d\right)}*{3}}e^{{\left(-bx - bc - d\right)}*{2}}}{(e^{bx + bc + d} + e^{-bx - bc - d})^{5}} - \frac{72ab^{4}e^{{\left(-bx - bc - d\right)}*{3}}e^{{\left(bx + bc + d\right)}*{2}}}{(e^{bx + bc + d} + e^{-bx - bc - d})^{5}} - \frac{36ab^{4}e^{{\left(bx + bc + d\right)}*{2}}e^{{\left(-bx - bc - d\right)}*{2}}}{(e^{bx + bc + d} + e^{-bx - bc - d})^{4}} - \frac{18ab^{4}e^{{\left(bx + bc + d\right)}*{2}}e^{-bx - bc - d}}{(e^{bx + bc + d} + e^{-bx - bc - d})^{3}} - \frac{24ab^{4}e^{{\left(bx + bc + d\right)}*{2}}e^{{\left(-bx - bc - d\right)}*{3}}}{(e^{bx + bc + d} + e^{-bx - bc - d})^{5}} + \frac{24ab^{4}e^{{\left(-bx - bc - d\right)}*{4}}e^{bx + bc + d}}{(e^{bx + bc + d} + e^{-bx - bc - d})^{5}} - \frac{12ab^{4}e^{{\left(-bx - bc - d\right)}*{3}}e^{bx + bc + d}}{(e^{bx + bc + d} + e^{-bx - bc - d})^{4}} - \frac{10ab^{4}e^{-bx - bc - d}e^{{\left(bx + bc + d\right)}*{2}}}{(e^{bx + bc + d} + e^{-bx - bc - d})^{3}} + \frac{30ab^{4}e^{-bx - bc - d}e^{{\left(bx + bc + d\right)}*{3}}}{(e^{bx + bc + d} + e^{-bx - bc - d})^{4}} + \frac{2ab^{4}e^{{\left(-bx - bc - d\right)}*{2}}e^{bx + bc + d}}{(e^{bx + bc + d} + e^{-bx - bc - d})^{3}} - \frac{24ab^{4}e^{-bx - bc - d}e^{{\left(bx + bc + d\right)}*{4}}}{(e^{bx + bc + d} + e^{-bx - bc - d})^{5}} + \frac{ab^{4}e^{-bx - bc - d}e^{bx + bc + d}}{(e^{bx + bc + d} + e^{-bx - bc - d})^{2}} - \frac{60ab^{4}e^{{\left(bx + bc + d\right)}*{4}}}{(e^{bx + bc + d} + e^{-bx - bc - d})^{4}} + \frac{50ab^{4}e^{{\left(bx + bc + d\right)}*{3}}}{(e^{bx + bc + d} + e^{-bx - bc - d})^{3}} - \frac{15ab^{4}e^{{\left(bx + bc + d\right)}*{2}}}{(e^{bx + bc + d} + e^{-bx - bc - d})^{2}} + \frac{24ab^{4}e^{{\left(bx + bc + d\right)}*{5}}}{(e^{bx + bc + d} + e^{-bx - bc - d})^{5}} + \frac{ab^{4}e^{bx + bc + d}}{(e^{bx + bc + d} + e^{-bx - bc - d})} - \frac{24ab^{4}ce^{{\left(bx + bc + d\right)}*{4}}e^{-bx - bc - d}}{(e^{bx + bc + d} + e^{-bx - bc - d})^{5}} + \frac{24ab^{4}ce^{{\left(-bx - bc - d\right)}*{2}}e^{{\left(bx + bc + d\right)}*{3}}}{(e^{bx + bc + d} + e^{-bx - bc - d})^{5}} + \frac{12ab^{4}ce^{{\left(bx + bc + d\right)}*{3}}e^{-bx - bc - d}}{(e^{bx + bc + d} + e^{-bx - bc - d})^{4}} + \frac{72ab^{4}ce^{{\left(bx + bc + d\right)}*{3}}e^{{\left(-bx - bc - d\right)}*{2}}}{(e^{bx + bc + d} + e^{-bx - bc - d})^{5}} - \frac{72ab^{4}ce^{{\left(-bx - bc - d\right)}*{3}}e^{{\left(bx + bc + d\right)}*{2}}}{(e^{bx + bc + d} + e^{-bx - bc - d})^{5}} + \frac{36ab^{4}ce^{{\left(-bx - bc - d\right)}*{2}}e^{{\left(bx + bc + d\right)}*{2}}}{(e^{bx + bc + d} + e^{-bx - bc - d})^{4}} - \frac{72ab^{4}ce^{{\left(bx + bc + d\right)}*{2}}e^{{\left(-bx - bc - d\right)}*{3}}}{(e^{bx + bc + d} + e^{-bx - bc - d})^{5}} + \frac{72ab^{4}ce^{{\left(-bx - bc - d\right)}*{4}}e^{bx + bc + d}}{(e^{bx + bc + d} + e^{-bx - bc - d})^{5}} - \frac{78ab^{4}ce^{{\left(-bx - bc - d\right)}*{3}}e^{bx + bc + d}}{(e^{bx + bc + d} + e^{-bx - bc - d})^{4}} + \frac{18ab^{4}ce^{{\left(-bx - bc - d\right)}*{2}}e^{bx + bc + d}}{(e^{bx + bc + d} + e^{-bx - bc - d})^{3}} + \frac{10ab^{4}ce^{bx + bc + d}e^{{\left(-bx - bc - d\right)}*{2}}}{(e^{bx + bc + d} + e^{-bx - bc - d})^{3}} - \frac{30ab^{4}ce^{bx + bc + d}e^{{\left(-bx - bc - d\right)}*{3}}}{(e^{bx + bc + d} + e^{-bx - bc - d})^{4}} - \frac{2ab^{4}ce^{{\left(bx + bc + d\right)}*{2}}e^{-bx - bc - d}}{(e^{bx + bc + d} + e^{-bx - bc - d})^{3}} + \frac{24ab^{4}ce^{bx + bc + d}e^{{\left(-bx - bc - d\right)}*{4}}}{(e^{bx + bc + d} + e^{-bx - bc - d})^{5}} - \frac{ab^{4}ce^{bx + bc + d}e^{-bx - bc - d}}{(e^{bx + bc + d} + e^{-bx - bc - d})^{2}} + \frac{60ab^{4}ce^{{\left(-bx - bc - d\right)}*{4}}}{(e^{bx + bc + d} + e^{-bx - bc - d})^{4}} - \frac{24ab^{4}ce^{{\left(-bx - bc - d\right)}*{5}}}{(e^{bx + bc + d} + e^{-bx - bc - d})^{5}} + \frac{15ab^{4}ce^{{\left(-bx - bc - d\right)}*{2}}}{(e^{bx + bc + d} + e^{-bx - bc - d})^{2}} - \frac{50ab^{4}ce^{{\left(-bx - bc - d\right)}*{3}}}{(e^{bx + bc + d} + e^{-bx - bc - d})^{3}} - \frac{ab^{4}ce^{-bx - bc - d}}{(e^{bx + bc + d} + e^{-bx - bc - d})}\\ \end{split}\end{equation} \]





你的问题在这里没有得到解决?请到 热门难题 里面看看吧!


返 回