数学
手机端

语言:中文
Language:English






当前位置:求导函数 > 导函数计算历史 > 答案
    本次共计算 1 个题目:每一题对 x 求 1 阶导数。
    注意,变量是区分大小写的。
\[ \begin{equation}\begin{split}【1/1】求函数\frac{{(\frac{(1 - sin(2)x)}{(1 + sin(2)x)})}^{1}}{2} 关于 x 的 1 阶导数:\\\end{split}\end{equation} \]\[ \begin{equation}\begin{split}\\解:&\\ &原函数 = \frac{\frac{-1}{2}xsin(2)}{(xsin(2) + 1)} + \frac{\frac{1}{2}}{(xsin(2) + 1)}\\&\color{blue}{函数的第 1 阶导数:}\\&\frac{d\left( \frac{\frac{-1}{2}xsin(2)}{(xsin(2) + 1)} + \frac{\frac{1}{2}}{(xsin(2) + 1)}\right)}{dx}\\=&\frac{-1}{2}(\frac{-(sin(2) + xcos(2)*0 + 0)}{(xsin(2) + 1)^{2}})xsin(2) - \frac{\frac{1}{2}sin(2)}{(xsin(2) + 1)} - \frac{\frac{1}{2}xcos(2)*0}{(xsin(2) + 1)} + \frac{1}{2}(\frac{-(sin(2) + xcos(2)*0 + 0)}{(xsin(2) + 1)^{2}})\\=&\frac{xsin^{2}(2)}{2(xsin(2) + 1)^{2}} - \frac{sin(2)}{2(xsin(2) + 1)} - \frac{sin(2)}{2(xsin(2) + 1)^{2}}\\ \end{split}\end{equation} \]





你的问题在这里没有得到解决?请到 热门难题 里面看看吧!


返 回