There are 1 questions in this calculation: for each question, the 1 derivative of r is calculated.
Note that variables are case sensitive.\[ \begin{equation}\begin{split}[1/1]Find\ the\ first\ derivative\ of\ function\ \frac{(\frac{1.24}{(1 + r)} + 1.24{\frac{1}{(1 + r)}}^{(t - 1)})(t - 1)}{2} + ((61 - t)*1.05{\frac{1}{(1 + r)}}^{t})\ with\ respect\ to\ r:\\\end{split}\end{equation} \]
\[ \begin{equation}\begin{split}\\Solution:&\\ &Primitive\ function\ = \frac{0.62t}{(r + 1)} - 1.05t{\frac{1}{(r + 1)}}^{t} + 64.05{\frac{1}{(r + 1)}}^{t} + 0.62t{\frac{1}{(r + 1)}}^{(t - 1)} - 0.62{\frac{1}{(r + 1)}}^{(t - 1)} - \frac{0.62}{(r + 1)}\\&\color{blue}{The\ first\ derivative\ function:}\\&\frac{d\left( \frac{0.62t}{(r + 1)} - 1.05t{\frac{1}{(r + 1)}}^{t} + 64.05{\frac{1}{(r + 1)}}^{t} + 0.62t{\frac{1}{(r + 1)}}^{(t - 1)} - 0.62{\frac{1}{(r + 1)}}^{(t - 1)} - \frac{0.62}{(r + 1)}\right)}{dr}\\=&0.62(\frac{-(1 + 0)}{(r + 1)^{2}})t + 0 - 1.05t({\frac{1}{(r + 1)}}^{t}((0)ln(\frac{1}{(r + 1)}) + \frac{(t)((\frac{-(1 + 0)}{(r + 1)^{2}}))}{(\frac{1}{(r + 1)})})) + 64.05({\frac{1}{(r + 1)}}^{t}((0)ln(\frac{1}{(r + 1)}) + \frac{(t)((\frac{-(1 + 0)}{(r + 1)^{2}}))}{(\frac{1}{(r + 1)})})) + 0.62t({\frac{1}{(r + 1)}}^{(t - 1)}((0 + 0)ln(\frac{1}{(r + 1)}) + \frac{(t - 1)((\frac{-(1 + 0)}{(r + 1)^{2}}))}{(\frac{1}{(r + 1)})})) - 0.62({\frac{1}{(r + 1)}}^{(t - 1)}((0 + 0)ln(\frac{1}{(r + 1)}) + \frac{(t - 1)((\frac{-(1 + 0)}{(r + 1)^{2}}))}{(\frac{1}{(r + 1)})})) - 0.62(\frac{-(1 + 0)}{(r + 1)^{2}})\\=& - \frac{-1.05t^{2}r{\frac{1}{(r + 1)}}^{t}}{(r + 1)(r + 1)} + \frac{1.05t^{2}{\frac{1}{(r + 1)}}^{t}}{(r + 1)(r + 1)} - \frac{64.05tr{\frac{1}{(r + 1)}}^{t}}{(r + 1)(r + 1)} - \frac{64.05t{\frac{1}{(r + 1)}}^{t}}{(r + 1)(r + 1)} - \frac{0.62t^{2}r{\frac{1}{(r + 1)}}^{(t - 1)}}{(r + 1)(r + 1)} - \frac{0.62t^{2}{\frac{1}{(r + 1)}}^{(t - 1)}}{(r + 1)(r + 1)} + \frac{0.62tr{\frac{1}{(r + 1)}}^{(t - 1)}}{(r + 1)(r + 1)} + \frac{0.62t{\frac{1}{(r + 1)}}^{(t - 1)}}{(r + 1)(r + 1)} + \frac{0.62tr{\frac{1}{(r + 1)}}^{(t - 1)}}{(r + 1)(r + 1)} + \frac{0.62t{\frac{1}{(r + 1)}}^{(t - 1)}}{(r + 1)(r + 1)} - \frac{0.62t}{(r + 1)(r + 1)} - \frac{0.62r{\frac{1}{(r + 1)}}^{(t - 1)}}{(r + 1)(r + 1)} - \frac{0.62{\frac{1}{(r + 1)}}^{(t - 1)}}{(r + 1)(r + 1)} + \frac{0.62}{(r + 1)(r + 1)}\\ \end{split}\end{equation} \]Your problem has not been solved here? Please go to the Hot Problems section!