There are 2 questions in this calculation: for each question, the 2 derivative of x is calculated.
Note that variables are case sensitive.\[ \begin{equation}\begin{split}[1/2]Find\ the\ second\ derivative\ of\ function\ {(x - 2)}^{2}{(x - 1)}^{3} - 2x + 4\ with\ respect\ to\ x:\\\end{split}\end{equation} \]
\[ \begin{equation}\begin{split}\\Solution:&\\ &Primitive\ function\ = x^{5} - 7x^{4} + 19x^{3} - 25x^{2} + 14x\\&\color{blue}{The\ first\ derivative\ function:}\\&\frac{d\left( x^{5} - 7x^{4} + 19x^{3} - 25x^{2} + 14x\right)}{dx}\\=&5x^{4} - 7*4x^{3} + 19*3x^{2} - 25*2x + 14\\=&5x^{4} - 28x^{3} + 57x^{2} - 50x + 14\\\\ &\color{blue}{The\ second\ derivative\ of\ function:} \\&\frac{d\left( 5x^{4} - 28x^{3} + 57x^{2} - 50x + 14\right)}{dx}\\=&5*4x^{3} - 28*3x^{2} + 57*2x - 50 + 0\\=&20x^{3} - 84x^{2} + 114x - 50\\ \end{split}\end{equation} \]\[ \begin{equation}\begin{split}[2/2]Find\ the\ second\ derivative\ of\ function\ {x}^{5} - 2x + 1\ with\ respect\ to\ x:\\\end{split}\end{equation} \]
\[ \begin{equation}\begin{split}\\Solution:&\\ &Primitive\ function\ = x^{5} - 2x + 1\\&\color{blue}{The\ first\ derivative\ function:}\\&\frac{d\left( x^{5} - 2x + 1\right)}{dx}\\=&5x^{4} - 2 + 0\\=&5x^{4} - 2\\\\ &\color{blue}{The\ second\ derivative\ of\ function:} \\&\frac{d\left( 5x^{4} - 2\right)}{dx}\\=&5*4x^{3} + 0\\=&20x^{3}\\ \end{split}\end{equation} \]Your problem has not been solved here? Please go to the Hot Problems section!