There are 1 questions in this calculation: for each question, the 1 derivative of x is calculated.
Note that variables are case sensitive.\[ \begin{equation}\begin{split}[1/1]Find\ the\ first\ derivative\ of\ function\ (0.38{x}^{2} - 1.92 * {10}^{6}x + 3.84 * {10}^{12}){\frac{1}{({10}^{6} + 0.5x)}}^{2}\ with\ respect\ to\ x:\\\end{split}\end{equation} \]
\[ \begin{equation}\begin{split}\\Solution:&\\ &Primitive\ function\ = - \frac{1920000x}{(0.5x + 10)(0.5x + 10)} + \frac{0.38x^{2}}{(0.5x + 10)(0.5x + 10)} + \frac{3840000000000}{(0.5x + 10)(0.5x + 10)}\\&\color{blue}{The\ first\ derivative\ function:}\\&\frac{d\left( - \frac{1920000x}{(0.5x + 10)(0.5x + 10)} + \frac{0.38x^{2}}{(0.5x + 10)(0.5x + 10)} + \frac{3840000000000}{(0.5x + 10)(0.5x + 10)}\right)}{dx}\\=& - \frac{1920000(\frac{-(0.5 + 0)}{(0.5x + 10)^{2}})x}{(0.5x + 10)} - \frac{1920000(\frac{-(0.5 + 0)}{(0.5x + 10)^{2}})x}{(0.5x + 10)} - \frac{1920000}{(0.5x + 10)(0.5x + 10)} + \frac{0.38(\frac{-(0.5 + 0)}{(0.5x + 10)^{2}})x^{2}}{(0.5x + 10)} + \frac{0.38(\frac{-(0.5 + 0)}{(0.5x + 10)^{2}})x^{2}}{(0.5x + 10)} + \frac{0.38*2x}{(0.5x + 10)(0.5x + 10)} + \frac{3840000000000(\frac{-(0.5 + 0)}{(0.5x + 10)^{2}})}{(0.5x + 10)} + \frac{3840000000000(\frac{-(0.5 + 0)}{(0.5x + 10)^{2}})}{(0.5x + 10)}\\=& - \frac{-960000x}{(0.5x + 10)(0.5x + 10)(0.5x + 10)} + \frac{960000x}{(0.5x + 10)(0.5x + 10)(0.5x + 10)} - \frac{0.19x^{2}}{(0.5x + 10)(0.5x + 10)(0.5x + 10)} - \frac{0.19x^{2}}{(0.5x + 10)(0.5x + 10)(0.5x + 10)} + \frac{0.76x}{(0.5x + 10)(0.5x + 10)} - \frac{1920000000000}{(0.5x + 10)(0.5x + 10)(0.5x + 10)} - \frac{1920000000000}{(0.5x + 10)(0.5x + 10)(0.5x + 10)} - \frac{1920000}{(0.5x + 10)(0.5x + 10)}\\ \end{split}\end{equation} \]Your problem has not been solved here? Please go to the Hot Problems section!