There are 1 questions in this calculation: for each question, the 1 derivative of x is calculated.
Note that variables are case sensitive.\[ \begin{equation}\begin{split}[1/1]Find\ the\ first\ derivative\ of\ function\ 4(2x - 2{({x}^{2} + 1)}^{\frac{1}{2}} + \frac{(x + {(2{x}^{2} + 2)}^{\frac{1}{2}})}{({x}^{2} + 2)})\ with\ respect\ to\ x:\\\end{split}\end{equation} \]
\[ \begin{equation}\begin{split}\\Solution:&\\ &Primitive\ function\ = 8x + \frac{4x}{(x^{2} + 2)} + \frac{4(2x^{2} + 2)^{\frac{1}{2}}}{(x^{2} + 2)} - 8(x^{2} + 1)^{\frac{1}{2}}\\&\color{blue}{The\ first\ derivative\ function:}\\&\frac{d\left( 8x + \frac{4x}{(x^{2} + 2)} + \frac{4(2x^{2} + 2)^{\frac{1}{2}}}{(x^{2} + 2)} - 8(x^{2} + 1)^{\frac{1}{2}}\right)}{dx}\\=&8 + 4(\frac{-(2x + 0)}{(x^{2} + 2)^{2}})x + \frac{4}{(x^{2} + 2)} + \frac{4(\frac{\frac{1}{2}(2*2x + 0)}{(2x^{2} + 2)^{\frac{1}{2}}})}{(x^{2} + 2)} + 4(2x^{2} + 2)^{\frac{1}{2}}(\frac{-(2x + 0)}{(x^{2} + 2)^{2}}) - 8(\frac{\frac{1}{2}(2x + 0)}{(x^{2} + 1)^{\frac{1}{2}}})\\=&\frac{-8x^{2}}{(x^{2} + 2)^{2}} + \frac{8x}{(2x^{2} + 2)^{\frac{1}{2}}(x^{2} + 2)} - \frac{8(2x^{2} + 2)^{\frac{1}{2}}x}{(x^{2} + 2)^{2}} - \frac{8x}{(x^{2} + 1)^{\frac{1}{2}}} + \frac{4}{(x^{2} + 2)} + 8\\ \end{split}\end{equation} \]Your problem has not been solved here? Please go to the Hot Problems section!